Skip to main content
Log in

A class of exact solutions for the incompressible viscous magnetohydrodynamic flow over a porous rotating disk

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous electrically conducting fluid flow due to a porous disk rotating with a constant angular speed. The three-dimensional hydromagnetic equations of motion are treated analytically to obtained exact solutions with the inclusion of suction and injection. The well-known thinning/thickening flow field effect of the suction/injection is better understood from the constructed closed form velocity equations. Making use of this solution, analytical formulas for the angular velocity components as well as for the permeable wall shear stresses are derived. Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. The temperature field is shown to accord with the dissipation and the Joule heating. As a result, exact formulas are obtained for the temperature field which take different forms corresponding to the condition of suction or injection imposed on the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Mech. 63, 193–248 (1934)

    MathSciNet  MATH  Google Scholar 

  2. Engquist, B., Schmid, W.: Mathematics Unlimited-2001 and Beyond. Springer-Verlag, New York (2001)

    Book  MATH  Google Scholar 

  3. Batchelor, G. K.: An Introduction to Fluid Dynamics. Cambridge University Press, America (1967)

    MATH  Google Scholar 

  4. Polyanin, A. D.: Exact solutions to the Navier-Stokes equations with generalized separation of variables. Dokl. Phys. 46, 726–731 (2001)

    Article  MathSciNet  Google Scholar 

  5. Asghar, S., Hanif, K., Hayat, T.: The effect of the slip condition on unsteady flow due to non-coaxial rotations of disk and a fluid at infinity. Mechanica 42, 141–148 (2007)

    Article  MATH  Google Scholar 

  6. Sai, K. S., Rao, B. N.: Magnetohydrodynamic flow in a rectangular duct with suction and injection. Acta Mech. 140, 57–64 (2000)

    Article  MATH  Google Scholar 

  7. Tsangaris, S., Kondaxakis, D., Vlachakis, N. W.: Exact solution for flow in a porous pipe with unsteady wall suction and/or injection. Commun. Nonlinear Sci. Numer. Simul. 12, 1181–1189 (2007)

    Article  MATH  Google Scholar 

  8. Wang, C. Y.: Flow due to a stretching boundary with partial slip an exact solution of the Navier-Stokes equations. Chem. Eng. Sci. 57, 3745–3747 (2002)

    Article  Google Scholar 

  9. Rosenhead, L.: Laminar Boundary Layers. Oxford University Press, England (1963)

    MATH  Google Scholar 

  10. Sherman, R. S.: Viscous Flow. McGraw-Hill (1990)

  11. Mehta, K. N., Jain, R. K.: Laminar hydrodynamic flow in a rectangular channel with porous walls. Proc. Nat. Inst. Sci. India 28, 846–856 (1962)

    MathSciNet  MATH  Google Scholar 

  12. Berman, A. S.: Laminar flow in channels with porous walls. J. Appl. Phys. 24, 1232–1235 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  13. Terril, R. M.: Laminar flow through a porous tube. J. Fluids Eng. 105, 303–307 (1983)

    Article  Google Scholar 

  14. Tsangaris, S., Kondaxakis, D., Vlachakis, N. W.: Exact solution of the Navier-Stokes equations for the pulsating Dean flow in a channel with porous walls. International Journal of Engineering Science 44, 1498–1509 (2006)

    Article  MATH  Google Scholar 

  15. Kármán, T. V.: Uber laminare und turbulente reibung. Zeitschnift fur Angewante Mathematik und Mechanik 1, 233–252 (1921)

    Article  MATH  Google Scholar 

  16. Benton, E. R.: On the flow due to a rotating disk. J. FluidMech. 24, 781–800 (1966)

    MATH  Google Scholar 

  17. Boedewadt, U. T.: Die drehstroemung uber festem grund. Zeitschnift fur AngewanteMathematik und Mechanik 20, 241–253 (1940)

    Google Scholar 

  18. Cochran, W. G.: The flow due to a rotating disk. Proc. Camb. Phil. Soc. 30, 365–375 (1934)

    Article  MATH  Google Scholar 

  19. Federov, B. I., Plavnik, G. Z., Prokhorov, I. V., et al.: Transitional flow conditions on a rotating-disk. J. Eng. Phys. 31, 1448–1453 (1976)

    Article  Google Scholar 

  20. Gregory, N., Stuart, J. T., Walker, W. S.: On the stability of three dimensional boundary layers with applications to the flow due to a rotating-disk. Philos. Trans. R. Soc. London Ser. A 248, 155–199 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hall, P.: An asymptotic investigation of the stationary modes of instability of the boundary layer on a rotating-disk. Proc. Roy. Soc. London Ser. A 406, 93–106 (1986)

    Article  MATH  Google Scholar 

  22. Jarre, S. L. G., Chauve, M. P.: Experimental study of rotatingdisk instability. II. Forced flow. Phys. Fluids 8, 2985–2994 (1996)

    Article  Google Scholar 

  23. Kohama, Y.: Study on boundary layer transition of a rotatingdisk. Acta Mech. 50, 193–199 (1984)

    Article  Google Scholar 

  24. Qiu, X. M., Huang, L., Jian, G. D.: Finite larmor radius magnetohydrodynamic analysis of the Rayleigh-Taylor instability in Z pinches with sheared axial flow. Phys. Plasmas 14, 032.111 (2007)

    Article  Google Scholar 

  25. Rogers, M. H., Lance, G. N.: The rotationaly symmetric flow of a viscous fulid in the presence of an infinite rotating disk. J. Fluid Mech. 7, 617–631 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  26. Turkyilmazoglu, M.: Linear absolute and convective instabilities of some two and three dimensional flows. [Ph.D. Thesis]. University of Manchester (1998)

  27. Berker, R.: An exact solution of the Navier-Stokes equation the vortex with curvilinear axis. International Journal of Engineering Science 20, 217–230 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rajagopal, K. R.: A class of exact solutions to the Navier-Stokes equations. International Journal of Engineering Science 22, 451–455 (1984)

    Article  MATH  Google Scholar 

  29. Rajagopal, K. R.: Swirling flows of viscoelastic fluids. International Journal of Engineering Science 30, 143–149 (1988)

    MATH  Google Scholar 

  30. Rao, A. R., Kasiviswanathan, S. R.: On exact solutions of the unsteady Navier-Stokes equation the vortex with instantaneous curvilinear axis. International Journal of Engineering Science 25, 337–349 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Erdogan, M. E.: Flow due to parallel disks rotating about noncoincident axis with one of them oscillating in its plane. Int. J. Non-Linear Mech. 34, 1019–1030 (1999)

    Article  MathSciNet  Google Scholar 

  32. Erdogan, M. E.: Flow induced by non-coaxial rotation of a disk executing nontorsional oscillations and a fluid rotating at infinity. International Journal of Engineering Science 38, 175 (1999)

    Article  Google Scholar 

  33. Millsaps, K., Pohlhausen, K.: Heat transfer by laminar flow from a rotating-plate. J. Aero. Sci. 19, 120–126 (1952)

    MathSciNet  MATH  Google Scholar 

  34. Riley, N.: The heat transfer from a rotating-disk. Q. J. Mech. Appl. Math. 17, 331–349 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sparrow, E. M., Gregg, J. L.: Heat transfer from a rotating disk to fluids of any Prandtl number. J. Heat Transfer. 81, 249–251 (1959)

    Google Scholar 

  36. Ackroyd, J. A. D.: On the steady flow produced by a rotating disc with either surface suction of injection. J. Eng. Phys. 12, 207–220 (1978)

    MATH  Google Scholar 

  37. Ariel, P. D.: On computation ofMHD flow near a rotating-disk. Z. Angew. Math. Mech. 82, 235–246 (2001)

    Article  MathSciNet  Google Scholar 

  38. Hayat, T., Asghar, S., Siddiqui, A. M., et al.: Unsteady MHD flow due to non-coaxial rotations of a porous disk and a fluid at infinity. Acta Mech. 151, 127–134 (2001)

    Article  MATH  Google Scholar 

  39. Hossain, M. A., Hossain, A., Wilson, M.: Unsteady flow of viscous incompressible fluid with temperature-dependent viscosity due to a rotating disc in the presence of transverse magnetic field and heat transfer. Int. J. Therm. Sci. 40, 11–20 (2001)

    Article  Google Scholar 

  40. Kaloni, P. N., Venkatasubramanian, S.: Physical mechanisms of laminar-boundary layer transition. Journal of Magnetism and Magnetic Materials 320, 142–149 (2008)

    Article  Google Scholar 

  41. Kumar, S. K., Thacker, W. I., Watson, L. T.: Magnetohydrodynamic flow and heat transfer about a rotating disk with suction and injection at the disk surface. Comput. Fluids 16, 183–193 (1988)

    Article  MATH  Google Scholar 

  42. Sharma, P. K., Khan, S.: MHDflow in porous medium induced by torsionally oscillating disk. Comput. Fluids 39, 1255–1260 (2010)

    Article  MATH  Google Scholar 

  43. Sparrow, E. M., Cess, R. D.: Magnetohydrodynamic flow and heat transfer about a rotating disk. J. Appl. Mech. 29, 181–187 (1962)

    Article  MathSciNet  Google Scholar 

  44. Huang, L., Qiu, X. M., Jian, G. D., et al.: Effects of compressibility on the finite larmor radius stabilized Rayleigh-Taylor instability in Z-pinch implosions. Phys. Plasmas 15, 022–103 (2008)

    Google Scholar 

  45. Schlichting, H.: Boundary-Layer Theory. McGraw-Hill (1979)

  46. Stuart, J. T.: On the effects of uniform suction on the steady flow due to a rotating disk. Q. J. Mech. Appl. Math. 7, 446–457 (1954)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Turkyilmazoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turkyilmazoglu, M. A class of exact solutions for the incompressible viscous magnetohydrodynamic flow over a porous rotating disk. Acta Mech Sin 28, 335–347 (2012). https://doi.org/10.1007/s10409-012-0042-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0042-6

Keywords

Navigation