Skip to main content
Log in

Factors influencing particle agglomeration during solid-state sintering

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Discrete element method (DEM) is used to study the factors affecting agglomeration in three-dimensional copper particle systems during solid-state sintering. A new parameter is proposed to characterize agglomeration. The effects of a series of factors are studied, including particle size, size distribution, inter-particle tangential viscosity, temperature, initial density and initial distribution of particles on agglomeration. We find that the systems with smaller particles, broader particle size distribution, smaller viscosity, higher sintering temperature and smaller initial density have stronger particle agglomeration and different distributions of particles induce different agglomerations. This study should be very useful for understanding the phenomenon of agglomeration and the micro-structural evolution during sintering and guiding sintering routes to avoid detrimental agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reeve, K.: Non-uniform shrinkage in sintering. Am. Ceram. Soc. Bull. 42, 452 (1963)

    Google Scholar 

  2. Petzow, G., Exner, H.E.: Particle rearrangement in solid-state sintering. Z. Metallk. 67, 611–618 (1976)

    Google Scholar 

  3. Exner, H.E., Petzow, G.: Shrinkage and rearrangement during sintering of glass spheres. In: Kuczynski, G.C. ed. Sintering and Catalysis. Plenum Press Publ. Corp., New York 279–293 (1975)

    Chapter  Google Scholar 

  4. Weiser, M.W., Dejonghe, L.C.: Rearrangement during sintering in two-dimensional arrays. J. Am. Ceram. Soc. 69, 822–826 (1986)

    Article  Google Scholar 

  5. Claussen, N., Exner, H.E.: Influence of sintering on fine powder compacts for catalyst application. Powder Metall. 15, 202–215 (1972)

    Google Scholar 

  6. Ada, K., Onal, M., Sarikaya, Y.: Investigation of the intraparticle sintering kinetics of a mainly agglomerated alumina powder by using surface area reduction. Powder Technol. 168, 37–41 (2006)

    Article  Google Scholar 

  7. Kuo, J., Bourell, D.L.: Structural evolution during calcination of sol-gel synthesized alumina and alumina-8 vol% zirconia composite. J. Mater. Sci. 32, 2687–2692 (1997)

    Article  Google Scholar 

  8. Palmero, P., Lombardi, M., Montanaro, L., et al.: Effect of heating rate on phase and microstructural evolution during pressureless sintering of a nanostructured transition alumina. Int. J. Appl. Ceram. Technol. 6, 420–430 (2009)

    Article  Google Scholar 

  9. Huppmann, W.J., Riegger, H.: Modeling of rearrangement processes in liquid-phase sintering. Acta Metall. 23, 965–971 (1975)

    Article  Google Scholar 

  10. Linardos, S., Zhang, Q., Alcock, J.R.: An investigation of the parameters effecting the agglomerate size of a pzt ceramic powder prepared with a sol-gel technique. J. Eur. Ceram. Soc. 27, 231–235 (2007)

    Article  Google Scholar 

  11. Trunec, M., Dobsak, P., Cihlar, J.: Effect of powder treatment on injection moulded zirconia ceramics. J. Eur. Ceram. Soc. 20, 859–866 (2000)

    Article  Google Scholar 

  12. Rhodes, W.H.: Agglomerate and particle-size effects on sintering yttria-stabilized zirconia. J. Am. Ceram. Soc. 64, 19–22 (1981)

    Article  Google Scholar 

  13. Lange, F.F.: Processing-related fracture origins. 1. Observations in sintered and isostatically hot-pressed Al2O3/ZrO2 composites. J. Am. Ceram. Soc. 66, 396–398 (1983)

    Article  Google Scholar 

  14. Kadushnikov, R.M., Skorokhod, V.V.: Simulating zonal segregation in powder sintering. Sov. Powder Metall. Met. Ceram. 30, 557–561 (1991)

    Google Scholar 

  15. Kadushnikov, R.M., Alievskii, D.M., Alievskii, V.M., et al.: Computer-simulation for microstructure evolution in a polydisperse material on sintering. 2. Zoned segregation. Sov. Powder Metall. Met. Ceram. 30, 356–360 (1991)

    Article  Google Scholar 

  16. Martin, C.L., Bouvard, D., Delette, G.: Discrete element simulations of the compaction of aggregated ceramic powders. J. Am. Ceram. Soc. 89, 3379–3387 (2006)

    Article  Google Scholar 

  17. Kim, J.C., Martin, D.M., Lim, C.S.: Effect of rearrangement on simulated particle packing. Powder Technol. 126, 211–216 (2002)

    Article  Google Scholar 

  18. Ciftcioglu, M., Akinc, M., Burkhart, L.: Effect of agglomerate strength on sintered density for yttria powders containing agglomerates of monosize spheres. J. Am. Ceram. Soc. 70, C329–C334 (1987)

    Article  Google Scholar 

  19. Olmos, L., Martin, C.L., Bouvard, D., et al.: Investigation of the sintering of heterogeneous powder systems by synchrotron microtomography and discrete element simulation. J. Am. Ceram. Soc. 92, 1492–1499 (2009)

    Article  Google Scholar 

  20. Olmos, L., Takahashi, T., Bouvard, D., et al.: Analysing the sintering of heterogeneous powder structures by in situ microtomography. Philos. Mag. 89, 2949–2965 (2009)

    Article  Google Scholar 

  21. Bernard, D., Gendron, D., Heintz, J.M., et al.: First direct 3d visualisation of microstructural evolutions during sintering through x-ray computed microtomoaraphy. Acta Mater. 53, 121–128 (2005)

    Article  Google Scholar 

  22. Lame, O., Bellet, D., Di Michiel, M., et al.: Bulk observation of metal powder sintering by x-ray synchrotron microtomography. Acta Mater. 52, 977–984 (2004)

    Article  Google Scholar 

  23. Vagnon, A., Riviere, J.P., Missiaen, J.M., et al.: 3d statistical analysis of a copper powder sintering observed in situ by synchrotron microtomography. ActaMater. 56, 1084–1093 (2008)

    Article  Google Scholar 

  24. Martin, C.L., Schneider, L.C.R., Olmos, L., et al.: Discrete element modeling of metallic powder sintering. Scr. Mater. 55, 425–428 (2006)

    Article  Google Scholar 

  25. Martin, C.L., Bouvard, D., Shima, S.: Study of particle rearrangement during powder compaction by the discrete element method. J. Mech. Phys. Solids 51, 667–693 (2003)

    Article  MATH  Google Scholar 

  26. Henrich, B., Wonisch, A., Kraft, T., et al.: Simulations of the influence of rearrangement during sintering. Acta Mater. 55, 753–762 (2007)

    Article  Google Scholar 

  27. Wang, D., Zhou, Y.: Particle dynamics in dense shear granular flow. Acta Mech. Sin. 26, 91–100 (2010)

    Article  Google Scholar 

  28. Olmos, L., Martin, C.L., Bouvard, D.: Sintering of mixtures of powders: Experiments and modelling. Powder Technol. 190, 134–140 (2009)

    Article  Google Scholar 

  29. Parhami, F., McMeeking, R.M.: A network model for initial stage sintering. Mech. Mater. 27, 111–124 (1998)

    Article  Google Scholar 

  30. Wonisch, A., Guillon, O., Kraft, T., et al.: Stress-induced anisotropy of sintering alumina: Discrete element modelling and experiments. Acta Mater. 55, 5187–5199 (2007)

    Article  Google Scholar 

  31. Martin, C.L., Bordia, R.K.: The effect of a substrate on the sintering of constrained films. Acta Mater. 57, 549–558 (2009)

    Article  Google Scholar 

  32. Martin, C.L., Camacho-Montes, H., Olmos, L., et al.: Evolution of defects during sintering: Discrete element simulations. J. Am. Ceram. Soc. 92, 1435–1441 (2009)

    Article  Google Scholar 

  33. Cundall, P.A., Strack, O.D.L.: Discrete numerical-model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  34. Thornton, C., Antony, S.: Quasi-static deformation of particulate media. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 356, 2763–2782 (1998)

    Article  MATH  Google Scholar 

  35. Bouvard, D., McMeeking, R.M.: Deformation of interparticle necks by diffusion-controlled creep. J. Am. Ceram. Soc. 79, 666–672 (1996)

    Article  Google Scholar 

  36. Wonisch, A., Kraft, T., Moseler, M., et al.: Effect of different particle size distributions on solid-state sintering: A microscopic simulation approach. J. Am. Ceram. Soc. 92, 1428–1434 (2009)

    Article  Google Scholar 

  37. Wonisch, A., Kraft, T., Moseler, M., et al.: Discrete element simulations of constrained ceramic powder sintering. Ceramic forum international: CFI. Berichte der Deutschen Keramischen Gesellschaft 85, 18–23 (2008)

    Google Scholar 

  38. Parhami, F., McMeeking, R.M., Cocks, A.C.F., et al.: A model for the sintering and coarsening of rows of spherical particles. Mech. Mater. 31, 43–61 (1999)

    Article  Google Scholar 

  39. Pan, J., Le, H., Kucherenko, S., et al.: A model for the sintering of spherical particles of different sizes by solid state diffusion. Acta Mater. 46, 4671–4690 (1998)

    Article  Google Scholar 

  40. Fang, T.T., Hsieh, H.L.: Experimental assessment of modified statistical-theory of sintering. J. Mater. Sci. 27, 4639–4646 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Hua Chen.

Additional information

The project was supported by the National Natural Science Foundation of China (10972220, 11125211 and 11021262) and 973 Project (2012CB937500).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Chen, SH. Factors influencing particle agglomeration during solid-state sintering. Acta Mech Sin 28, 711–719 (2012). https://doi.org/10.1007/s10409-012-0029-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0029-3

Keywords

Navigation