Skip to main content
Log in

3D contaminant migration model with consolidation dependent transport coefficients

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Soil consolidation would induce variations of its transport coefficients such as hydraulic conductivity and diffusion coefficient. This paper presents a study of the influence of barrier consolidation on transport coefficients, and a 3D transport model based on mixture theory is proposed for describing the liners that involve circular defects in the geomembrane. The elastoplastic ALPHA model is revised by using the spatially mobilized plane (SMP) criterion for simulating the deformation of the soils. Then, the 3D model coupling the nonlinear consolidation and contaminant advection-diffusion is solved using the finite element software ABAQUS. The results show that the importance of reducing the defect size in the geomembrane and the liner porosity to control the contaminant concentration increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, J., Liu, W.B., Jia, M.C.: Geoenvironmental Engineering. China Communications Press, Beijing (2004)

    Google Scholar 

  2. Kooi, H., Garavito, A.M., Bader, S.: Numerical modelling of chemical osmosis and ultrafiltration across clay formations. J. Geochemical Exploration 78–79, 333–336 (2003)

    Article  Google Scholar 

  3. Brusseau, M.L.: The effect of nonlinear sorption on transformation of contaminants during transport in porous media. J. Contaminant Hydrology 17, 277–291 (1995)

    Article  Google Scholar 

  4. Vereecken, H., Jaekel, U., Georgescu, A.: Asymptotic analysis of solute transport with linear nonequilibrium sorption in porous media. Transport Porous Media 36(2), 189–210 (1999)

    Article  MathSciNet  Google Scholar 

  5. Ferrell, R.E., Aagaard, P., Forsman, J., et al.: Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners. Appl. Clay Sci. 21(1–2), 59–66 (2002)

    Article  Google Scholar 

  6. Li, Z.H., Alessi, D., Zhang, P.F., et al.: Organo-illite as a low permeability sorbent to retard migration of anionic contaminants. J. Environ. Eng. 128(7), 583–587 (2002)

    Article  Google Scholar 

  7. Bourg, I.C., Bourg, A.C.M., Sposito, G.: Modeling diffusion and ad-sorption in compacted bentonite: a critical review. J. Contaminant Hydrology 61(1–4), 293–302 (2003)

    Article  Google Scholar 

  8. Brusseau, M.L., Xie, L., Li, L.: Biodegradation during contaminant transport in porous media: 1. Mathematical analysis of controlling factors. J. Contaminant Hydrology 37(3–4), 269–293 (1999)

    Article  Google Scholar 

  9. Brusseau, M.L., Hu, M.Q., Wang, J., et.al.: Biodegradation during contaminant transport in porous media: 2. The influence of physicochemical factors. Environmental Science and Technology 33(1), 96–103 (1999)

    Article  Google Scholar 

  10. Karapanagioti, H.K.: Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes. J. Contaminant Hydrology 48(1–2), 1–21 (2001)

    Article  Google Scholar 

  11. Islam, J., Singhal, N.: A one-dimensional reactive multicomponent landfill leachate transport model. Environmental Modelling and Software 17(6), 531–543 (2002)

    Article  Google Scholar 

  12. Zhang, J.L., Luan, M.T., Yang, Q.: Numerical simulation of contaminant migration process for landfill consideration effects of sorption and degradation. Chinese J. Geotech. Eng. 24(supp1), 5211–5216 (2005)

    Google Scholar 

  13. Dominijanni, A., Manassero, M.: Modelling osmosis and solute transport through clay membrane barriers. Geotechnical Special Publication 130–142, 3437–3448 (2005)

    Google Scholar 

  14. Malusis, M.A., Shackelford, C.D.: Predicting solute flux through a clay membrane barrier. J. Geotech. Geoenviron. Eng. 130(5), 477–487 (2004)

    Article  Google Scholar 

  15. Malusis, M.A., Shackelford, C.D.: Explicit and implicit coupling during solute transport through clay membrane barriers. J. Contaminant Hydrology 72(1–4), 259–285 (2004)

    Article  Google Scholar 

  16. Bader, S., Kooi, H.: Modelling of solute and water transport in semi-permeable clay membranes: Comparison with experiments. Adv. Water Resources 28(3), 203–214 (2005)

    Article  Google Scholar 

  17. Smith, D.W.: One-dimensional contaminant transport through a deforming porous medium: theory and a solution for a quasisteady-state problem. Int. J. Numer. Anal. Methods Geomech. 24(8), 693–722 (2000)

    Article  MATH  Google Scholar 

  18. Peters, G.P., Smith, D.W.: Solute transport through a deforming porous medium. Int. J. Numer. Anal. Methods Geomech. 26(7), 683–717 (2002)

    Article  MATH  Google Scholar 

  19. Alshawabkeh, A.N., Rahbar, N., Sheahan, T., et al.: Volume change effects on solute transport in clay under consolidation. In: Proc. of Advances in Geotechnical Engineering with Emphasis on Dams, High way Materials, and Soil Improvement (GPP No.1) Geo Jordon Conference 105–115 (2004)

  20. Alshawabkeh, A.N., Rahbar, N., Sheahan, T.: A model for contaminant mass flux in capped sediment under consolidation. J. Contaminant Hydrology 78(3), 147–165 (2005)

    Article  Google Scholar 

  21. Alshawabkeh, A.N., Rahbar, N.: Parametric study of onedimensional solute transport in deformable porous media. J. Geotech. Geoenviron. Eng. 132(8), 1001–1010 (2006)

    Article  Google Scholar 

  22. Zhang, Z.H., Zhao, C.G., Li, T.: Model of contaminant transport considering consolidation deformation of soils. Rock and Soil Mechanics 29(6), 1435–1439 (in Chinese) (2008)

    MathSciNet  Google Scholar 

  23. Kaczmarek, M., Hueckel, T., Chawla, V., et al.: Transport through a clay barrier with the contaminant concentration dependent permeability. Transport Porous Media 29(2), 159–178 (1997)

    Article  Google Scholar 

  24. Peters, G.P., Smith, D.W.: The influence of advective transport on coupled chemical and mechanical consolidation of clays. Mechanics of Materials 36(5–6), 467–486 (2004)

    Article  Google Scholar 

  25. Kaczmarek, M., Hueckel, T.: Transport through a clay barrier with the contaminant concentration dependent permeability. Transport Porous Media 29(2), 159–178 (1997)

    Article  Google Scholar 

  26. Hassanizadeh, S.M.: Derivation of basic equations of mass transport in porous media, part 2. Generalized Darcy’s and Fick’s laws. Adv. Water Resources 9(4), 207–222 (1986)

    Article  Google Scholar 

  27. Achanta, S., Cushman, J. H.: On multicomponent, multiphase thermomechanics with interfaces. Int. J. Eng. Sci. 32(11), 1717–1738 (1994)

    Article  MATH  Google Scholar 

  28. Bennethum, L.S., Cushman, J. H.: Multiscal, hybrid mixture theory for swelling systems-I: balance laws. Int. J. Eng. Sci. 34(2), 125–145 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bennethum, L.S., Cushman, J.H.: Multiscal, hybrid mixture theory for swelling systems-II: constitutive theory. Int. J. Eng. Sci. 34(2), 147–169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bennethum, L.S., Cushman, J.H.: Coupled solvent and heat transport of a mixture of swelling porous particles and fluids: Single time-scale problem. Transport Porous Media 36, 211–244 (1999)

    Article  Google Scholar 

  31. Bennethum, L.S., Murad, M.A., Cushman, J.H.: Macroscale thermodynamics and the chemical potential for swelling porous media. Transport Porous Media 39, 187–225 (2000)

    Article  MathSciNet  Google Scholar 

  32. Bennethum, L.S., Cushman, J. H.: Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: I. macroscale field equations. Transport Porous Media 47(3), 309–336 (2002)

    Article  MathSciNet  Google Scholar 

  33. Bennethum, L.S., Cushman, J. H.: Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: II. constitutive theory. Transport Porous Media 47(3), 337–362 (2002)

    Article  MathSciNet  Google Scholar 

  34. Murad, M.A., Cushman, J. H.: Multiscale flow and deformation in hydrophilic swelling porous media. Int. J. Eng. Sci. 34(3), 313–338 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Murad, M.A., Cushman, J.H.: Thermomechanical model of hydration swelling in smectitic clays: I Two-scale mixture-theory approach. Int. J. Numer. Anal. Methods Geomech. 23(7), 673–696 (1999)

    Article  MATH  Google Scholar 

  36. Singh, P.P., Cushman, J.H., Bennethum, L.S., et al.: Themomechanics of swelling biopolymeric systerms. Transport in Porous Media 53(1), 1–24 (2003)

    Article  Google Scholar 

  37. Singh, P.P., Cushman, J.H., Maier, D.E.: Multiscale fluid transport theory for swelling biopolymers. Chemical Engineering Science 58(11), 2409–2419 (2003)

    Article  Google Scholar 

  38. Singh, P.P., Cushman, J.H., Maier, D.E.: Three scale thermomechanical theory for swelling biopolymeric systems. Chemical Engineering Science 58(17), 4017–4035 (2003)

    Article  Google Scholar 

  39. Collins, I.F., Kelly, P.A.: A thermomechanical analysis of a family of soil models. Géotechnique 52(7), 507–518 (2002)

    Article  Google Scholar 

  40. Matsuoka, H., Yao, Y.P., Sun, D.A.: The Cam-clay models revised by the SMP criterion. Soils and Foundations 39(1), 81–95 (1999)

    Article  Google Scholar 

  41. Passman, S.T.: A theory of multiphase mixtures. In: Trusdell C. ed. Rational Thermodynamics. Springer-Verlag, New York, 286–325 (1984)

    Chapter  Google Scholar 

  42. Wei, C.F., Muraleetharan, K.K.: A continuum theory of porous media saturated by multiple immiscible fluids: I. Linear poroelasticity. Int. J. Eng. Sci. 40(16), 1807–1833 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling. Springer-Verlag, Heidelberg (2004)

    MATH  Google Scholar 

  44. Liu, I.S.: Method of Lagrange multipliers for exploitation of the entropy principle. Archive for Rational Mechanics and Analysis 46, 131–148 (1972)

    MathSciNet  MATH  Google Scholar 

  45. Hart, R.D., St John, C.M.: Formulation of a fully-coupled thermal-mechanical-fluid flow model for non-linear geologic systems. Int. J. Rock Mech. Mining Sciences and Geomech. Abstracts 23(3), 213–224 (1986)

    Article  Google Scholar 

  46. He, J., Shi, J.Y., Liao, Z.Q., et al.: Test of ions diffusion in bentonite. Rock and Soil Mechanics 28(4), 831–835 (2007) (in Chinese)

    Google Scholar 

  47. Houlsby, G.T., Puzrin, A.M.: A thermomechanical framework for constitutive models for rat-independent dissipative materials. Int. J. Plasticity 16(9), 1017–1047 (2000)

    Article  MATH  Google Scholar 

  48. Li, X.S.: Thermodynamics-based constitutive framework for unsaturated soils. 1: Theory. Géotechnique 57(5), 411–422 (2007)

    Article  Google Scholar 

  49. Li, X.S.: Thermodynamics-based constitutive framework for unsaturated soils. 2: A basic triaxial model. Géotechnique 57(5), 423–435 (2007)

    Article  Google Scholar 

  50. Yao, Y.P., Sun, D.A.: Application of Lade’s criterion to Camclay model. Journal of Engineering Mechanics ASCE 126(1), 112–119 (2000)

    Article  Google Scholar 

  51. Yao, Y.P., Luo, T., Sun, D.A., et al.: A simple 3-D constitutive model for both clay and sand. Chinese Journal of Geotechnical Engineering 24(2), 240–246 (2002)

    Google Scholar 

  52. Yao, Y.P., Lu, D.C., Zhou, A.N., et al.: Generalized non-linear strength theory and transformed stress space. Science in China Ser. E Engineering and Materials Science 47(6), 691–709 (2004)

    MATH  Google Scholar 

  53. Sun, D.A., Zhen, W.Z., Huang W.X.: Application of 3-D elastoplastic model to analysis of consolidation behavior of embankment on soft soils. Rock and Soil Mechanics 30(3), 669–674 (2009) (in Chinese)

    Google Scholar 

  54. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. John Wiley and Sons, Chichester (2000)

    MATH  Google Scholar 

  55. Qian, X.D., Guo, Z.P., Shi, J.Y., et al.: Design and construction in modern sanitary landfill. Chinese Architecture Industry Press, Beijing (2001) (in Chinese)

    Google Scholar 

  56. Shi, J., Xue, T.G.: Application of electrical leakage detection method in evaluate landfill geomembrane integrality. Environmental Protection Science 33(6), 78–80 (2007) (in Chinese)

    Google Scholar 

  57. Yuan, Y.Q., Hu, H., Wang, H.Q.: Safety analysis in landfill geomembrance intergrality. Journal of Hunan University (Natrual Science) 35(11), 29–33 (2008) (in Chinese)

    Google Scholar 

  58. He, J.: Theoretical study of transport through GCL in landfill based on microscopic analysis. [Ph.D. Thesis], Hohai University, Nanjing (2006) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Gang Zhao.

Additional information

The project was supported by the National Natural Science Foundation of China (50778013) and the National Basic Research Program (973) of China (2010CB732100).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Zhao, CG., Liu, Y. et al. 3D contaminant migration model with consolidation dependent transport coefficients. Acta Mech Sin 28, 151–163 (2012). https://doi.org/10.1007/s10409-012-0023-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0023-9

Keywords

Navigation