Skip to main content
Log in

Ultrasonic beam steering using Neumann boundary condition in multiplysics

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The traditional one-dimensional ultrasonic beam steering has time delay and is thus a complicated problem. A numerical model of ultrasonic beam steering using Neumann boundary condition in multiplysics is presented in the present paper. This model is based on the discrete wave number method that has been proved theoretically to satisfy the continuous conditions. The propagating angle of novel model is a function of the distance instead of the time domain. The propagating wave fronts at desired angles are simulated with the single line sources for plane wave. The result indicates that any beam angle can be steered by discrete line elements resources without any time delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach, J.D.: Modeling for quantitative non-destructive evaluation. Ultrasonics 40(1–8), 1–10 (2002)

    Article  MathSciNet  Google Scholar 

  2. Angel, Y.C., Achenbach, J.D.: Reflection and transmission of elastic waves by a periodic array of cracks: Oblique incidence. Wave Motion 7(3), 375–397 (1985)

    Article  MATH  Google Scholar 

  3. Li, J., Rose, J.L.: Implementing guided wave mode control by use of a phased transducer array. IEEE Trans. 48, 761–768 (2001)

    Google Scholar 

  4. Wilcox, P.D.: Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structures. IEEE Trans. 50(6), 699–709 (2003)

    Google Scholar 

  5. Wang, C.H., Rose, J.T., Chang, F.K.: A synthetic time-reversal imaging method for structural health monitoring. Smart Mater. Struct. 13(2), 415–423 (2004)

    Article  Google Scholar 

  6. Michaels, J., Hall, J., Michaels, T.: A daptive imaging of damage from changes in guided wave signal recorded from spatially distributed arrays. Proc. SPIE 7395(1), 1–15 (2009)

    Google Scholar 

  7. Roth, D.J., Tokars, R.P.: Ultrasonic phased array inspection for an isogrid structural element with cracks. NASA/TM, 1–19 (2010)

  8. Deng, F.Q., Zhang, B.X., Wang, D.: Radiation acoustic field of a linear phased array on a cylindrical surface. Chin. Phys. Lett. 23(12), 3297–3300 (2006)

    Article  Google Scholar 

  9. Ozeri, S., Shmilovitz, D., Singer, Sigmond.: Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shaded transmitter. Ultrasonics 50(7), 666–674 (2010)

    Article  Google Scholar 

  10. Wooh, S.C., Shi, Y.J.: Optimum beam steering of linear phased arrays. Wave Motion 29(3), 245–265 (1999)

    Article  Google Scholar 

  11. Azar, L., Shi, Y., Wooh, S.C.: Beam focusing behavior of linear phased arrays. NDT & E International 33(3), 189–198 (2000)

    Article  Google Scholar 

  12. Elfgard, K.: Curved arrays for pipe wall inspection-fundamentals of electronic focusing for curved and plane arrays. Wave Motion 46(4), 221–236 (2009)

    Article  MATH  Google Scholar 

  13. Kono, N.Y., Nakahata, K.Y.: Modeing of phased array transducer and simulation of flow echoes. Science Links Japan 73(10), 88–95 (2007)

    Google Scholar 

  14. Kimoto, K., Ueno, S., Hirose, S.: Image-based sizing of surface-breaking cracks by SH-wave array ultrasonic testing. Ultrasonics 45(1–4), 152–164 (2006)

    Article  Google Scholar 

  15. Mcnab, A., Capbell, M.J.: Ultrasonic phsaed arrays for nondestructive testing. NDT Int. 20(6), 333–337 (2007)

    Article  Google Scholar 

  16. Yu, L., Giurgiutiu, V.: In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection. Ultrasonics 48(2), 117–134 (2008)

    Article  Google Scholar 

  17. Kim, D., Philen, M.: On the beamsteering characteristics of MFC phased arrays for structural health monitoring. In: Proc. of 49th AIAA/ ASME Structures, 1–6 (2008)

  18. Liu, W., Hong, J.W.: Three-dimensional Lamb wave propagation excited by a phased piezoelectric array. SmartMater 19(8), 1–12 (2010)

    Google Scholar 

  19. Kim, D., Philen, M.: Guided wave beamsteering using MFC phased arrays for structural health monitoring. Journal of Intelligent Material Systems and Structures 21(2), 1011–1024 (2010)

    Article  Google Scholar 

  20. Friedlander, L.: Some inequalities between Dirichlet and Numann eigenvalues. Arch Rational Mech. Anal. 116(2), 153–160 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Driscoll, T., Gottlieb, H.P.W.: Isospectral shapes with Neumann and alternating boundary condition. Phys. Rev. E 68(1), 016702–016702 (2003)

    Article  MathSciNet  Google Scholar 

  22. Jakobson, D., Levitin, M., Nadirashvili, N.: Spectral problems with mixed Dirichlet-Neumann boundary condition. Journal of Computational and Applied Mathematics 194(1), 141–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Parzanchevski, O., Ram, B.: Linear representations and isospectrality with boundary conditions. Journal of Geometric Analysis 20(2), 439–471 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Raman, V., Abbas, A., Sunil, C.K.J.: Mapping local cavitation events in high intensity ultrasound fields. Excerpt from the Proceeding of the COMSOL Users Conference, Bangalore, 1–6 (2006)

  25. Castaings, M., Predoi, M.V., Hosten, B.: Ultrasound propagation in viscoslastic material guides. In: Proceedings of the COMSOL Users Conference, Paris, 1–6 (2005)

  26. Pilarski, A., Rose, J.L., Balasubramaniam, K.: The angular and frequency characteristics of reflectivity from a solid layer embedded between two solids with imperfect boundary conditions. J. Acoust. Soc. Am. 87(2), 532–541 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Guo Qiu.

Additional information

The project was supported by the National Natural Science Foundation of China (10972014).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, ZG., Wu, B. & He, CF. Ultrasonic beam steering using Neumann boundary condition in multiplysics. Acta Mech Sin 28, 146–150 (2012). https://doi.org/10.1007/s10409-012-0018-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0018-6

Keywords

Navigation