Skip to main content
Log in

Geometric and material nonlinear analysis of tensegrity structures

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities. The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations, while the material nonlinearity is treated through elastoplastic stress-strain relationship. The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method. A computer program is developed to predict the mechanical responses of tensegrity systems under tensile, compressive and flexural loadings. Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program. The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications. On the other hand, its bending strength capacity is not sensitive to the self-stress level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuller, R.B.: Synergetics-Explorations in the Geometry of Thinking. Macmillan Publishing Co. Inc., London, UK (1975)

    Google Scholar 

  2. Tibert, A.G., Pellegrino, S.: Deployable tensegrity reflectors for small satellites. J. Spacecraft Rockets 39(5), 701–709 (2002)

    Article  Google Scholar 

  3. Fu, F.: Structural behavior and design methods of tensegrity domes. J. Constr. Steel Res. 61(1), 23–35 (2005)

    Article  Google Scholar 

  4. Tran, H.C., Lee, J.: Initial self-stress design of tensegrity grid structures. Comput. Struct. 88(9–10), 558–566 (2010)

    Article  Google Scholar 

  5. Kebiche, K., Kazi-Aoual, M.N., Motro, R.: Geometrical nonlinear analysis of tensegrity systems. Eng. Struct. 21(9), 864–876 (1999)

    Article  Google Scholar 

  6. Rhode-Barbarigos, L., Ali, N.B.H., Motro, R., et al.: Designing tensegrity modules for pedestrian bridges. Eng. Struct. 32(4), 1158–1167 (2010)

    Article  Google Scholar 

  7. Tran, H.C., Lee, J.: Self-stress design of tensegrity grid structures with exostresses. Int. J. Solids Struct. 47(20), 2660–2671 (2010)

    Article  MATH  Google Scholar 

  8. Ingber, D.E.: The architecture of life. Sci. Am. 278(1), 48–57 (1998)

    Article  Google Scholar 

  9. Ingber, D.E.: Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116(7), 1157–1173 (2003)

    Article  Google Scholar 

  10. Stamenovic, D.: Effects of cytoskeletal prestress on cell rheological behavior. Acta Biomater. 1(3), 255–262 (2005)

    Article  Google Scholar 

  11. Feng, X.Q., Li, Y., Cao, Y.P., et al.: Design methods of rhombic tensegrity structures. Acta Mech. Sinica 26(4), 559–565 (2010)

    Article  Google Scholar 

  12. Connelly, R., Whiteley, W.: Second-order rigidity and prestress stability for tensegrity frameworks. SIAM J. Discrete Math. 9(3), 453–491 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jórdan, T., Recski, A., Szabadka, Z.: Rigid tensegrity labelings of graphs. Eur. J. Combin. 30(8), 1887–1895 (2009)

    Article  MATH  Google Scholar 

  14. Paul, C., Lipson, H., Valero-Cuevas, F.: Design and control of tensegrity robots for locomotion. IEEE T. Robot. 22(5), 944–957 (2006)

    Article  Google Scholar 

  15. Rovira, A.G., Tur, J.M.M.: Control and simulation of a tensegrity-based mobile robot. Robot. Auton. Syst. 57(5), 526–535 (2009)

    Article  Google Scholar 

  16. Wang, B.B.: Free-standing Tension Structures: From Tensegrity Systems to Cable Strut Systems. Spon Press, London and New York (2004)

    Google Scholar 

  17. Pinaud, J.P., Solari, S., Skelton, R.E.: Deployment of a class 2 tensegrity boom. In: Proceedings of SPIE Smart Structures and Materials, SPIE Press 155–162 (2004)

  18. Motro, R.: Tensegrity: Structural Systems for the Future. (1st edn.) Kogan Page Science, London (2003)

    Google Scholar 

  19. Tibert, A.G., Pellegrino, S.: Review of form-finding methods for tensegrity structures. Int. J. Space Struct. 18(4), 209–223 (2003)

    Article  Google Scholar 

  20. Kahla, N.B., Kebiche, K.: Nonlinear elastoplastic analysis of tensegrity systems. Eng. Struct. 22(11), 1552–1566 (2000)

    Article  Google Scholar 

  21. Murakami, H.: Static and dynamic analyses of tensegrity structures. Part II. Quasi-static analysis. Int. J. Solids Struct. 38(20), 3615–3629 (2001)

    Article  Google Scholar 

  22. Crane III, C.D., Duffy, J., Correa, J.: Static analysis of tensegrity structures. J. Mech. Design 127(2), 257–268 (2005)

    Article  Google Scholar 

  23. Bathe, K.J., Ramm, E., Wilson, E.: Finite element formulations for large deformation dynamic analysis. Int. J. Numer. Meth. Eng. 9(2), 353–386 (1975)

    Article  MATH  Google Scholar 

  24. Bathe, K.J., Ozdemir, H.: Elastic-plastic large deformation static and dynamic analysis. Comput. Struct. 6(2), 81–92 (1976)

    Article  MATH  Google Scholar 

  25. Bathe, K.J.: Finite Element Procedures. Englewood Cliffs, New Jersey: Prentice-Hall (1996)

    Google Scholar 

  26. Murakami, H.: Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations of motion. Int. J. Solids Struct. 38(20), 3599–3613 (2001)

    Article  MATH  Google Scholar 

  27. Masic, M., Skelton, R., Gill, P.: Algebraic tensegrity form-finding. Int. J. Solids Struct. 42(16–17), 4833–4858 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Deng, H., Kwan, A.S.K.: Unified classification of stability of pin-jointed bar assemblies. Int. J. Solids Struct. 42(15), 4393–4413 (2005)

    Article  MATH  Google Scholar 

  29. Zhang, J.Y., Ohsaki, M.: Adaptive force density method for form-finding problem of tensegrity structures. Int. J. Solids Struct. 43(18–19), 5658–5673 (2006)

    Article  MATH  Google Scholar 

  30. Ohsaki, M., Zhang, J.Y.: Stability conditions of prestressed pin-jointed structures. Int. J. Nonlinear Mech. 41(10), 1109–1117 (2006)

    Article  Google Scholar 

  31. Pellegrino, S., Calladine, C.R.: Matrix analysis of statically and kinematically indeterminate frameworks. Int. J. Solids Struct. 22(4), 409–428 (1986)

    Article  MathSciNet  Google Scholar 

  32. Tran, H.C., Lee, J.: Advanced form-finding for cable-strut structures. Int. J. Solids Struct. 47(14–15), 1785–1794 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, H.C., Lee, J. Geometric and material nonlinear analysis of tensegrity structures. Acta Mech Sin 27, 938–949 (2011). https://doi.org/10.1007/s10409-011-0520-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0520-2

Keywords

Navigation