Skip to main content
Log in

Validation of a CIP-based tank for numerical simulation of free surface flows

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A constrained interpolation profile CIP-based numerical tank is developed to simulate violent free surface flows. The numerical simulation is performed by the CIP-based Cartesian grid method, which is described in the present paper. The tangent of hyperbola for interface capturing (THINC) scheme is applied for capturing complex free surfaces. The new model is capable of simulating a flow with violently varied free surface. A series of computations are conducted to assess the developed algorithm and its versatility. These tests include the collapse of water column with and without an obstacle, sloshing in a fixed tank, the generation of regular waves in a tank, the generation of extreme waves in a tank. Excellent agreements are obtained when numerical results are compared with available analytical, experimental, and other numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guyenne, P., Grilli, S.T.: Numerical study of three-dimensional overturning waves in shallow water. Journal of Fluid Mechanics 547, 361–388 (2006) DOI 10.1017/S0022112005007317

    Article  MATH  MathSciNet  Google Scholar 

  2. Zhao, X.Z., Sun, Z.C., Liang, S.X.: A numerical study of the transformation of water waves generated in a wave flume. Fluid Dyn. Res. 41(3), 035510 (2009a) DOI 10.1088/0169-5983/41/3/035510

    Article  Google Scholar 

  3. Zhao, X.Z., Sun, Z.C., Liang, S.X.: A numerical method for nonlinear water waves. Journal of Hydrodynamics 21(3), 236–234 (2009b)

    Google Scholar 

  4. Zhao, X.Z., Hu, C.H., Sun, Z.C., et al.: Validation of the initialization of a numerical wave flume using a time ramp. Fluid Dyn. Res. 42(4), 045504 (2010b) DOI 10.1088/0169-5983/42/4/045504

    Article  Google Scholar 

  5. Ma, Q.W., Wu, G.X., Eatock Taylor, R.: Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part 1: Methodology and numerical procedure. International Journal for Numerical Methods in Fluids 36(3), 265–285 (2001)

    Article  MATH  Google Scholar 

  6. Turnbull, M.S., Borthwick, A.G.L., Eatock Taylor, R.: Numerical wave tank based on a σ-transformed finite element inviscid flow solver. Int. J. Numer. Meth. Fluids 42(6), 641–663 (2003)

    Article  MATH  Google Scholar 

  7. Walhorn, E., Kölke, A., Hübner, B., et al.: Fluid-structure coupling within a monolithic model involving free surface flows. Computers and Structures 83(25–26), 2100–2111 (2005)

    Article  Google Scholar 

  8. Hirt, C.W., Nichols, B.D.: Volume of Fluid (VOF) method for the dynamics of free surface boundaries. Journal of Computational physics 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  9. Zhao, X.Z., Hu, C.H., Sun, Z.C.: Numerical simulation of extreme wave generation using VOF method. Journal of Hydrodynamics 22(4), 466–477 (2010c) DOI 10.1088/0169-5983/42/4/045504

    Article  Google Scholar 

  10. Koshizuka, S., Tamako, H., Oka, Y.: A particle method for incompressible viscous flow with fluid fragmentation. Comput. Fluid Dyn. J. 4(1), 29–46 (1995)

    Google Scholar 

  11. Rudman, M., Cleary, P.: Oblique Impact of Rogue Waves on a Floating Platform. In: Proceedings of the 19th International Offshore and Polar Engineering Conference, pp. 572–579, Osaka, Japan (2009)

  12. Yabe, T., Xiao, F., Utsumi, T.: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys. 169(2), 556–593 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hu, C.H., Kashiwagi, M.: A CIP-based method for numerical simulations of violent free surface flows. J. Mar. Sci. Technol., 9(4), 143–157 (2004)

    Article  Google Scholar 

  14. Hu, C.H., Kashiwagi, M., Kishev, Z., et al.: Application of CIP method for strongly nonlinear marine hydrodynamics. Ship Technol. Res. 53(2), 74–87 (2006)

    Google Scholar 

  15. Hu, C.H., Kashiwagi, M.: Two-dimensional numerical simulation and experiment on strongly nonlinear wave-body interactions. J. Mar. Sci. Technol. 14(2), 200–213 (2009)

    Article  Google Scholar 

  16. Zhao, X.Z., Hu, C.H., Sun, Z.C.: Numerical simulation of focused wave generation using CIP method. In: Proceedings of the Twentieth International Offshore and Polar Engineering Conference, 596–603, Beijing, China (2010a)

  17. Xiao, F., Honma, Y., Kono, T.: A simple algebraic interface capturing scheme using hyperbolic tangent function. Int. J. Numer. Meth. Fluid 48(9), 1023–1040 (2005)

    Article  MATH  Google Scholar 

  18. Xiao, F., Ikebata, A.: An efficient method for capturing free boundaries in multi-fluid simulations. Int. J. Num. Methods Fluids 42(2), 187–210 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Martin, J.C., Moyce, W.J.: An experimental study of the collapse of liquid columns on a rigid horizontal plane. Phil. Trans. R. Soc. A 244(882), 312–324 (1952) DOI 10.1098/rsta.1952.0006

    Article  MathSciNet  Google Scholar 

  20. Ubbink, O.: Numerical prediction of two fluid systems with sharp interface. [Ph.D. Thesis], Imperial College, London (1997)

    Google Scholar 

  21. Andrillon, Y., Alessandrini, B.: A 2D+T VOF fully coupled formulation for the calculation of breaking free-surface flow. J. Mar. Sci. Technol. 8(4), 159–168 (2004)

    Article  Google Scholar 

  22. Qian, L., Causon, D.M., Ingram, D.M., et al.: A Cartesian cut cell two-fluid solver for hydraulic flow problems. Journal of hydraulic Engineering (ASCE) 129(9), 688–696 (2003)

    Article  Google Scholar 

  23. Suzuki, Y., Koshizuka, S., Oka, Y.: Hamiltonian movingparticle semi-implicit (HMPS) method for incompressible fluid flows. Comput. Methods Appl. Mech. Engrg. 196(29–30), 2876–2894 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Faltinsen, O.M.: A nonlinear theory of sloshing in rectangular tanks. J. Ship Res. 18(4), 224–241 (1974)

    Google Scholar 

  25. Wu, G.X., Eatock Taylor, R.: Finite element analysis of twodimensional non-linear transient water waves. Applied Ocean Research 16(6), 363–372 (1994)

    Article  Google Scholar 

  26. Frandsen, J. B.: Sloshing motions in excited tanks. Journal of Computational Physics 196(1), 53–87 (2004)

    Article  MATH  Google Scholar 

  27. Chern, M.J., Borthwick, A.G.L., Eatock Taylor, R.: A pseudospectral σ-transformation model of 2-d nonlinear waves. J. Fluids Struct. 13(5), 607–630 (1999)

    Article  Google Scholar 

  28. Dean, R.G., Dalrymple, R.A.: Water wave mechanics for engineers and scientists. Prentice-Hall (1984)

  29. Madsen, O.S.: On the generation of long waves. J. Geophys. Res. 76(36), 8672–8683 (1971)

    Article  Google Scholar 

  30. Zhao, X.Z.: Experimental and numerical study of freak waves. [Ph.D. Thesis]. Dalian University of Technology, Dalian (2008) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Zeng Zhao.

Additional information

The project was supported by the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, XZ. Validation of a CIP-based tank for numerical simulation of free surface flows. Acta Mech Sin 27, 877–890 (2011). https://doi.org/10.1007/s10409-011-0510-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0510-4

Keywords

Navigation