Skip to main content
Log in

Finite element analysis of 2D SMA beam bending

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A thermomechanical model of a shape memory alloy beam bending under tip force loading is implemented in finite element codes. The constitutive model is a one dimensional model which is based on free energy and motivated by statistical thermodynamics. The particular focus of this paper is on the aspects of finite element modeling and simulation of the inhomogeneous beam bending problem. This paper extends previous work which is based on the small deformation Euler-Bernoulli beam theory and by treating an SMA beam as consisting of multi-layers in a two-dimensional model. The flux terms are involved in the heat transfer equation. The simulations can represent both shape memory effect and super-elastic behavior. Different thermal boundary condition effect and load rate effect can also be captured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krulevitch, P., Lee, A.P., Ramsey, P.B. et al.: Thin film shape memory alloy microactuators. Journal of Microelectromechanical Systems 5(4), 270–282 (1996)

    Article  Google Scholar 

  2. Kohl, M., Krevet, B., Just, B.: SMA microgripper system. Sensors and Actuators A: Physical 97–98, 646–652 (2002)

    Article  Google Scholar 

  3. Xu, D., Wang, L., Ding G. et al.: Characteristics and fabrication of NiTi/Si diaphragm micropump. Sensors and Actuators A: Physical 93(1), 87–92 (2002)

    Article  Google Scholar 

  4. Ishida, A., Sato, M., Yoshikawa W. et al.: Bimorph-type microactuator using TiNi shape-memory thin film. Material Science Forum 394–395, 487–490 (2001)

    Google Scholar 

  5. Kohl, M., Brugger, D., Ohtsuka D. et al.: A novel actuation mechanism on the basis of ferromagnetic SMA thin films. Sensors and Actuators A: Physical 114(2–3), 445–450 (2004)

    Article  Google Scholar 

  6. Namazu T., Tashiro Y., Inoue S.: Ti-Ni shape memory alloy film-actuated microstructures for a MEMS probe card. Journal of Micromechanics and Microengineering. 17(1), 154–162 (2007)

    Article  Google Scholar 

  7. Tanaka K., NagaKi S.: A thermomechanical description of materials with internalvariables in the process of phase transition. Archive of Applied Mechanics 51(5), 287–299 (1982)

    MATH  Google Scholar 

  8. Liang, C., Rogers, C.A.: One-dimensional thermomechanical constitutive relations for shape memory materials. Journal of IntelligentMaterial System and Structures 1(2), 207–234 (1990)

    Article  Google Scholar 

  9. Ahluwalia, R., Lookman, T., Saxena, A. et al.: Landau theory for shape memory polycrystals. Acta Materialia 52(1), 209–218 (2004)

    Article  Google Scholar 

  10. Elliott, R.S., Shaw, J.A., Triantafyllidis, N.: Stability of crystalline solids-II: application to temperature-induced martensitic phase transformations in a bi-atomic crystal. Journal of Mechanics and Physics of Solids 54(1), 193–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, X., Ackland, G.J., Rabe, K.M.: Crystal structures and shape-memory behaviour of NiTi. Nature Materials 2(5), 307–311 (2003)

    Article  Google Scholar 

  12. Ivshin, Y., Pence, T.J.: A thermomechanical model for a one variant shape memory material. Journal of Intelligent Materials System and Structures 5(4), 455–473 (1994)

    Article  MathSciNet  Google Scholar 

  13. Amalraj, J.J., Bhattacharyya, A., Faulkner, M.G.: Finiteelement modeling of phase transformation in shape memory alloy wires with variable material properties. Smart Mater. Struct. 9(5), 622–631 (2000)

    Article  Google Scholar 

  14. Meier, H., Oelschlaeger, L.: Numerical thermomechanical modeling of shape memory alloy wires. Materials Science and Engineering A 378(1–2), 484–489 (2004)

    Article  Google Scholar 

  15. Tsoi, K.A., Schrooten, J., Stalmans, R.: Part I. Thermomechanical characteristics of shape memory alloys. Materials Science and Engineering A 368(1–2), 286–298 (2004)

    Article  Google Scholar 

  16. Müller, C., Bruhns, O.T.: A thermodynamic finite-strain model for pseudoelastic shape memory alloys. International Journal of Plasticity 22(9), 1658–1682 (2006)

    Article  MATH  Google Scholar 

  17. Azadi, B., Rajapakse, R.K.N.D., Maijer, D.M.: Onedimensional thermomechanical model for dynamic pseudoelastic response of shape memory alloys. Smart Mater. Struct. 15(4), 996–1008 (2006)

    Article  Google Scholar 

  18. Zhu, S., Zhang, Y.: A thermomechanical constitutive model for superelastic SMA wire with strain-rate dependence. Smart Mater. Struct. 16(5), 1696–1707 (2007)

    Article  Google Scholar 

  19. Shaw, J.A.: A thermomechanical model for a 1D shape memory alloy wire with propagating instabilities. International Journal of Solids and Structures 39(5), 1275–1305 (2002)

    Article  MATH  Google Scholar 

  20. Iadicola, M.A., Shaw, J.A.: Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy. International Journal of Plasticity 20(4–5), 577–605 (2004)

    Article  MATH  Google Scholar 

  21. Chang, B.C., Shaw, J.A., Iadicola, M.A.: Thermodynamics of shape memory alloy wire: modeling, experiments, and application. Continuum Mech. Thermodyn. 18(1–2), 83–118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shaw, J.A., Churchill, C.B.: A reduced-order thermomechanical model and analytical solution for uniaxial shape memory alloy wire actuators. Smart Mater. Struct. 18(6), 065001–065022 (2009)

    Article  Google Scholar 

  23. Achenbach, M., Müller, I.: Simulation of material behavior of alloys with shape memory. Arch Mech. 37(6), 573–585 (1985)

    Google Scholar 

  24. Achenbach, M.: A model for an alloy with shape memory. International Journal of Plasticity 5(4), 371–395 (1989)

    Article  Google Scholar 

  25. Seelecke, S., Müller, I.: Shape memory alloy actuators in smart structures-modeling and simulation. Appl. Mech. Rev. 57(1), 23–46 (2004)

    Article  Google Scholar 

  26. Thiebaud, F., Collet, M., Foltete, E. et al.: Implementation of a multi-axial pseudoelastic model to predict the dynamic behavior of shape memory alloys. Smart Mater. Struct. 16(4), 935–947 (2007)

    Article  Google Scholar 

  27. Rahman, M.A., Kowser, M.A.: Nonlinear analysis of cantilever shape memory alloy beams of variable cross section. Smart Mater. Struct. 16(2), 531–540 (2007)

    Article  Google Scholar 

  28. Yang, S., Seelecke, S., Li, Q.: Finite element analysis of SMA beam bending using COMSOL. Proc. of SPIE 7289, (2009) doi: 10.1117/12.816714

  29. Auricchio, F., Sacco, E.: A temperature-dependent beam for shape memory alloys: constitutive modelling, finite element implemenation and numerical simulations. Computer Methods in Applied Mechanics Engineering 174(1–2), 171–190 (1999)

    Article  MATH  Google Scholar 

  30. Auricchio, F., Sacco, E.: Thermo-mechanical modeling of a superelastic shape-memory wire under cyclic stretching-bending loadings. International Journal of Solid and Structures 38(34–35), 6123–6145 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Bin Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, SB., Xu, M. Finite element analysis of 2D SMA beam bending. Acta Mech Sin 27, 738–748 (2011). https://doi.org/10.1007/s10409-011-0496-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0496-y

Keywords

Navigation