Advertisement

Acta Mechanica Sinica

, 27:550 | Cite as

Wrinkle-crease interaction behavior simulation of a rectangular membrane under shearing

  • C. -G. WangEmail author
  • H. -F. Tan
  • X. -D. He
Research Paper

Abstract

Wrinkling analysis of a rectangular membrane with a single crease under shearing is performed to understand the wrinkle-crease interaction behaviors. The crease is considered by introducing the residual stresses from creasing and the effective modulus into the baseline configuration with assumed circular cross-sectional crease geometry. The wrinkling analysis of the creased membrane is then performed by using the direct perturb-force (DP) simulation technique which is based on our modified displacement components (MDC) method. Results reveal that the crease may influence the stress transfer path in the membrane and further change the wrinkling direction. The crease appears to improve the bending stiffness of the membrane which has an effective resistance on the wrinkling evolution. The effects of the crease orientation on wrinkle-crease interaction are studied toward the end of this paper. The results show that the wrinkling amplitude, wavelength, and direction increase as the crease orientation increases, and the wrinkling number decreases with the increasing crease orientation. These results will be of great benefit to the analysis and the control of the wrinkles in the membrane structures.

Keywords

Membrane structure Wrinkle-crease interaction Membrane wrinkling Creased membrane 

References

  1. 1.
    Jenkins, C.H.: Gossamer spacecraft: membrane and inflatable structures technology for space applications. In: Progress in Astronautics and Aeronautics, Vol. 191. AIAA, Reston, VA, 103–105, 321–331 (2001)Google Scholar
  2. 2.
    Jenkins, C.H.: Recent advances in gossamer spacecraft: Chapter 3 membrane wrinkling. In: Progress in Astronautics and Aeronautics, Vol. 212. AIAA, Reston, VA, 109–164 (2006)Google Scholar
  3. 3.
    Miller, R.K., Hedgepeth, J.M., Weingarten, V.I.: Finite element analysis of partly wrinkled membranes. Comp. & Struc. 20(3), 631–639 (1985)CrossRefGoogle Scholar
  4. 4.
    Pipkin, A.C.: The relaxed energy density for isotropic elastic membranes. IMA J. Appl. Math. 36(1), 85–99 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Liu, X., Jenkins, C.H., Schur, W.W.: Fine scale analysis of wrinkled membrane. Int. J. Comput. Eng. Sci., 1(2), 281–298 (2000)CrossRefGoogle Scholar
  6. 6.
    Ding, H., Yang, B.: The modeling and numerical analysis of wrinkled membranes. Int. J. Numer. Meth. Eng. 58(12), 1785–1801 (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    Coman, C.D., Glasgow, S.: On the applicability of tension field theory to a wrinkling instability problem. ActaMechanica 190(1–4), 57–72 (2007)zbMATHGoogle Scholar
  8. 8.
    Jarasjarungkiat, A., Wuchner, R. Bletzinger, K.U.: A wrinkling model based on material modification for isotropic and orthotropic membranes. Comput. Methods Appl. Mech. Engrg. 197(6–8), 773–788 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Leifer, J., Belvin, W.K.: Prediction of wrinkle amplitudes in thin film membranes using finite element modeling. In: Proc. of the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, 7–10 April, Norfolk, Virginia. AIAA 2003-1983 (2003)Google Scholar
  10. 10.
    Wong, Y., Pellegrino, S.: Wrinkled membrane, part I: experiments; part II: analytical models; part III: numerical simulations. J. Mech. Mater. Struct. 1(1), 3–95 (2006)CrossRefGoogle Scholar
  11. 11.
    Tessler, A., Sleight, D.W.: Geometrically nonlinear shell analysis of wrinkled thin-film membranes with stress concentrations, J. Spacecraft Rockets 44(3), 582–588 (2007)CrossRefGoogle Scholar
  12. 12.
    Wang, C.G., Tan, H.F., Du, X.W., et al.: Wrinkling prediction of rectangular shell-membrane under transverse in-plane displacement. Int. J. Solids Structures 44(20), 6507–6516 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Wang, C.G., Tan, H.F., Du, X.W., et al.: Wrinkling behaviors of gossamer structure with stretched annulus-shape under in-plane torsion. Mech. Adv. Mater. Struc. 15(2), 157–164 (2008)CrossRefGoogle Scholar
  14. 14.
    Wang, C.G., Du, X.W., Tan, H.F., et al.: A new computational method for wrinkling analysis of gossamer space structures, Int. J. Solids Structures 46(6), 1516–1526 (2009)CrossRefGoogle Scholar
  15. 15.
    Wang, J.T., Chen, T., Sleight, D.W., et al.: Simulating nonlinear deformations of solar sail membranes using explicit time integration. In: Proc. of 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, April 19–22, AIAA 2004-1580 (2004)Google Scholar
  16. 16.
    Wang, C.G., Du, X.W., Wan, Z.M.: Numerical simulation of wrinkles in space inflatable structures. J. Spacecraft Rockets 43(5), 1146–1149 (2006)CrossRefGoogle Scholar
  17. 17.
    Murphey, T.W.: A nonlinear elastic constitutive model for wrinkled thin films. [Ph.D. Thesis], University of Colorado, 1–133 (2000)Google Scholar
  18. 18.
    MacNeal, R., Robbins, W.: Tensile properties of a tape with a transverse crease, Astro Research Corporation, Rept. ARC-R-241, 1–14 (1966)Google Scholar
  19. 19.
    Gough, A., Hossain, N.M.A., Jenkins, C.H., et al.: Experimental and numerical study of creased membranes. In: Proc. of 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Austin, Texas, 18–21 Apr, AIAA 2005-1976 (2005)Google Scholar
  20. 20.
    Hossain, A., Jenkins, C.H., Woo, K.: Nonlinear material response of systematically creased membranes. In: Proc. of 47th AIAA /ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI, 1–4 May, AIAA 2006-1801 (2006)Google Scholar
  21. 21.
    Hossain, A., Woo, K., Jenkins, C.H.: Dynamic response of systematically creased membranes. In: Proc. of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI. 23–26 April, AIAA 2007-1806 (2007)Google Scholar
  22. 22.
    Woo, K., Nandukar, K., Jenkins, C.H.: Effective modulus of creased thin membranes. J. Spacecraft Rockets 45(1), 19–26 (2008)CrossRefGoogle Scholar
  23. 23.
    Papa, A., Pellegrino, S.: Systematically creased thin-film membrane structures. J. Spacecraft Rockets 45(1), 10–18 (2008)CrossRefGoogle Scholar
  24. 24.
    Horner, G.C., Elliot, M.D.: A fabrication and deployment approach for a Miura-ori solar sail model. In: Proc. of 43rd AIAA/ASME/ASCE/AHS/AHS Structures, Structural Dynamics and Materials Conference, Denver, CO, 22–25 April, AIAA-2002-1708 (2002)Google Scholar
  25. 25.
    Woo, K., Jenkins, C.H.: Analysis of wrinkling behavior of creased thin membranes. In: Proc. of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI. 23–26 April, AIAA 2007-1818 (2007)Google Scholar
  26. 26.
    Woo, K., Jenkins, C.H.: Thickness effect on wrinkle-crease interaction for thin sheets. In: Proc. of 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 7–10 April, Schaumburg, IL, AIAA 2008-2136 (2008)Google Scholar
  27. 27.
    Woo, K., Jenkins, C.H.: Effect of crease orientation on wrinkle-crease interaction in thin sheets. In: Proc. of 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4–7May, Palm Springs, California, AIAA 2009-2162 (2009)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Center for Composite MaterialsHarbin Institute of TechnologyHarbinChina
  2. 2.Post-doctoral Research Center in Material Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations