Skip to main content
Log in

An efficient technique for recovering responses of parameterized structural dynamic problems

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this article, an effective technique is developed to efficiently obtain the output responses of parameterized structural dynamic problems. This technique is based on the conception of reduced basis method and the usage of linear interpolation principle. The original problem is projected onto the reduced basis space by linear interpolation projection, and subsequently an associated interpolation matrix is generated. To ensure the largest nonsingularity, the interpolation matrix needs to go through a timenode choosing process, which is developed by applying the angle of vector spaces. As a part of this technique, error estimation is recommended for achieving the computational error bound. To ensure the successful performance of this technique, the offline-online computational procedures are conducted in practical engineering. Two numerical examples demonstrate the accuracy and efficiency of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, G.R., Quek, S.S.: Finite Element Method: A Practical Course. Butterworth-Heinemann Press, Oxford (2003)

    MATH  Google Scholar 

  2. Yan, X.Q.: Finite element modeling of consolidation of composite laminates. Acta Mech. Sin. 22(1), 62–67 (2006)

    Article  MATH  Google Scholar 

  3. Semblat, J.F., Duval, A. M., Dangla, P.: Modal Superposition Method for the analysis of seismic-wave amplification. Bull. Seismol. Soc. Am. 93(3), 1144–1153 (2003)

    Article  Google Scholar 

  4. Festa, G., Vilotte, J.P.: The Newmark method as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics. Geophys. J. Int. 161(3), 789–812 (2005)

    Article  Google Scholar 

  5. Ozkul, T.A.: A finite element formulation for dynamic analysis of shells of general shape by using the Wilson-θ method. Thin Wall. Struct. 42(4), 497–513 (2004)

    Article  Google Scholar 

  6. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing. Prentice Hall Press, Upper Saddle River (2006)

    Google Scholar 

  7. Mermer, C., Kim, D., Kim, Y.: Efficient 2D FFT implementation on mediaprocessors. Parallel Comput. 29(6), 691–709 (2003)

    MathSciNet  Google Scholar 

  8. Huang, H.Y., Lee, Y.Y., Lo, P.C.: A novel algorithm for computing the 2D split-vector-radix FFT. Signal Process. 84(3), 561–570 (2004)

    Article  MATH  Google Scholar 

  9. Prud’homme, C., Rovas, D.V., Veroy, K., et al.: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluid Engrg. 124(1), 70–80 (2002)

    Article  Google Scholar 

  10. Veroy, K.: Reduced-basis methods applied to problems in elasticity analysis and application, [Ph.D. Thesis], MIT, America (2003)

    Google Scholar 

  11. Rozza, G.: Reduced-basis methods for elliptic equations in sub-domains with a posteriori error bounds and adaptivity. Appl. Numer. Math. 55(4), 403–424 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, Y.H., Han, X., Ran, C.X.: Efficient method for transient analysis in laminated plates based on reduced-basis method. Acta Mech. Sin. 40(2), 255–260 (2008) (in Chinese)

    Google Scholar 

  13. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nguyen, N.C.: A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales. J. Comput. Phys. 227(23), 9807–9822 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Patera, A.T., Rønquist, E.M.: Reduced basis approximation and a posteriori error estimation for a Boltzmann model. Comput. Methods Appl. Mech. Engrg. 196(29–30), 2925–2942 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Milani, R., Quarteroni, A., Rozza, G.: Reduced basis method for linear elasticity problems with many parameters. Comput. Methods Appl. Mech. Engrg. 197(51–52), 4812–4829 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, G.R., Lee, J.H., Patera, A.T., et al.: Inverse identification of thermal parameters using reduced-basis method. Comput. Methods Appl. Mech. Engrg. 194(27–29), 3090–3107 (2005)

    Article  MATH  Google Scholar 

  18. Ito, K., Ravindran, S.S.: A reduced-order method for simulation and control of fluid flows, J. Comput. Phys. 143(2), 403–425 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zaw, K., Liu, G.R., Deng, B., et al.: Rapid identification of elastic modulus of the interface tissue on dental implants surfaces using reduced-basis method and a neural network, J. Biomech. 42(5), 634–641 (2009)

    Article  Google Scholar 

  20. Kapania, R.K., Byun, C.: Reduction methods based on eigenvectors and Ritz vectors for nonlinear transient analysis. Comput. Mech. 11(1), 65–82 (1993)

    Article  MATH  Google Scholar 

  21. Krysl, P., Lall, S., Marsden, J.E.: Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Methods Engrg. 51(4), 479–504 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deraemaeker, A., Ladeveze, P., Leconte, P.: Reduced basis for model updating in structural dynamics based on constitutive relation error. Comput. Methods Appl. Mech. Engrg. 191(21–22), 2427–2444 (2002)

    Article  MATH  Google Scholar 

  23. Cheney, W., Light, W.: A Course in Approximation Theory. Brooks/Cole Publishing Company, California, America (2000)

    Google Scholar 

  24. Liefvendahl, M., Stocki, R.: A study on algorithms for optimization of Latin hypercubes. J. Stat. Plann. Infer. 136(9), 3231–3247 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ye, K.Q., Li, W., Sudjianto, A.: Algorithmic construction of optimal symmetric Latin hypercube designs. J. Stat. Plann. Infer. 90(1), 145–159 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Han.

Additional information

The project was supported by the National Natural Science Foundation of China (10802028), the Major State Basic Research Development Program of China (2010CB832705) and the National Science Fund for Distinguished Young Scholars (10725208).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Han, X. & Jiang, C. An efficient technique for recovering responses of parameterized structural dynamic problems. Acta Mech Sin 27, 757–766 (2011). https://doi.org/10.1007/s10409-011-0448-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0448-0

Keywords

Navigation