Skip to main content
Log in

Representation of robotic fractional dynamics in the pseudo phase plane

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper analyses robotic signals in the perspective of fractional dynamics and the pseudo phase plane (PPP). It is shown that the spectra of several experimental signals can be approximated by trend lines whose slope characterizes their fractional behavior. For the PPP reconstruction of each signal, the time lags are calculated through the fractal dimension. Moreover, to obtain a smooth PPP, the noisy signals are filtered through wavelets. The behavior of the spectra reveals a relationship with the fractal dimension of the PPP and the corresponding time delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Machado, J.A.T.: A probabilistic interpretation of the fractional-order differentiation. Journal of Fractional Calculus & Applied Analysis 6(1), 73–80 (2003)

    MATH  Google Scholar 

  2. Podlubny, I.: Geometrical and physical interpretation of fractional integration and fractional differentiation. Journal of Fractional Calculus & Applied Analysis 5(4), 357–366 (2002)

    MathSciNet  Google Scholar 

  3. Bohannan, G.W.: Analog realization of a fractional control element-revisited. In: Tutorial Workshop on Fractional Order Calculus at 41st IEEE Conference on Decision and Control, Las Vegas, (2002)

  4. Machado, J.A.T.: Analysis and design of fractional-order digital control systems. Journal Systems Analysis-Modelling-Simulation 27, 107–122, (1997)

    MATH  Google Scholar 

  5. Barbosa, R.S., Machado, J.A.T., Ferreira, I.M.: Tuning of PID controllers based on bode’s ideal transfer function. Nonlinear Dynamics, 38, 305–321 (2004)

    Article  MATH  Google Scholar 

  6. Oustaloup, A., Moreau, X., Nouillant, M.: From fractal robustness to non integer approach in vibration insulation: the CRONE suspension. In: Proceedings of the 36th Conference on Decision & Control, San Diego, California, USA, December (1997)

  7. Driver, R.D.: Ordinary and Delay Differential Equations, Applied Mathematical Sciences 20, Springer-Verlag, New York (1977)

    MATH  Google Scholar 

  8. Faybishenko, B.: Nonlinear dynamics in flow through unsaturated fractured porous media: Status and perspectives. Rev. Geophys. 42, (2003)

  9. Deng, W.H., Li, C.P., Lü, J.: Stability analysis of linear fractional differential system with multiple time-delays. Nonlinear Dynamics 48(4), 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Méhauté, A.Le, Howlett, J.: Fractal Geometries: Theory and Applications. CRC Press, Inc., Boca Raton, FL (1991)

    MATH  Google Scholar 

  11. Nigmatullin, R.R.: Fractional kinetic equations and “universal” decoupling of a memory function in mesoscale region. Physica A: Statistical Mechanics and its Applications 363(2), 282–298 (2006)

    Article  Google Scholar 

  12. Feeny, B.F., Lin, G.: Fractional derivatives applied to phasespace reconstructions. Nonlinear Dynamics 38(1–4) 85–99 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., et al.: The analysis of observed chaotic data in physical systems. Reviews of Modern Physics 65(4), 1331–1392 (1993)

    Article  MathSciNet  Google Scholar 

  14. Trendafilova, I., van Brussel., H.: Non-linear dynamics tools for the motion analysis and condition monitoring of robot joints. Mech. Sys. and Signal Proc. 15(6), 1141–1164 (2001)

    Article  Google Scholar 

  15. Novikov, V.V., Voitsekhovskii, K.V.: Viscoelastic properties of fractal media. Journal of Applied Mechanics and Technical Physics 41(1), 149–158 (2000)

    Article  MathSciNet  Google Scholar 

  16. Koga, H., Nakagawa, M.: Method of evaluation of fractal dimensions in terms of fractional integro-differential equations. Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 87(4), 30–39 (2004)

    Article  Google Scholar 

  17. Lima, M.F.M., Machado, J.A.T., Crisóstomo, M.: Fractional dynamics in mechanical manipulation. Journal of Computational and Nonlinear Dynamics, Transactions of the ASME 3(2), 021203-1–021203-9 (2008)

    Google Scholar 

  18. Choi, J.-G., Park, J.-K., Kim, K.-H., et al.: A daily peak load forecasting system using a chaotic time series. In: Proc. Int. Conf. on Intelligent Systems Applications to Power Systems, IEEE; 28 Jan–2 Feb, 1996, 283–287

  19. Lima, M.F.M., Machado, J.A.T., Crisóstomo, M.: Hpseudo phase plane, delay and fractional dynamics in robotic signals. JESA-Journal Européen des Systèmes Automatisés 42(6-7-8), 1037–1051 (2008)

    Article  Google Scholar 

  20. Mallat S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego, California, USA (1999)

    MATH  Google Scholar 

  21. Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79(1), 61–78 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel F. M. Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, M.F.M., Machado, J.A.T. Representation of robotic fractional dynamics in the pseudo phase plane. Acta Mech Sin 27, 28–35 (2011). https://doi.org/10.1007/s10409-011-0405-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0405-4

Keywords

Navigation