Skip to main content
Log in

On the behaviour characterization of metallic cellular materials under impact loading

  • Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper reviews the common mechanical features of the metallic cellular material under impact loading as well as the characterization methods of such behaviours. The main focus is on the innovations of various testing methods at impact loading rates. Following aspects were discussed in details. (1) The use of soft nylon Hopkinson/Kolsky bar for an enhanced measuring accuracy in order to assess if there is a strength enhancement or not for this class of cellular materials under moderate impact loading; (2) The use of digital image correlations to determine the strain fields during the tests to confirm the existence of a pseudo-shock wave propagation inside the cellular material under high speed impact; (3) The use of new combined shear compression device to determine the loading envelop of cellular materials under impact multiaxial loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibson L.J., Ashby M.F.: Cellular Solids. Pergamon Press, Oxford (1988)

    MATH  Google Scholar 

  2. Fan H., Fang D.: Anisotropic mechanical properties of lattice grid composites. J. Compos. Mater. 42(23), 2445–2460 (2008)

    Article  Google Scholar 

  3. Zhang Y., Qiu X., Fang D.: Mechanical properties of two novel planar lattice structures. Int. J. Solids Struct. 45(13), 3751–3768 (2008)

    Article  MATH  Google Scholar 

  4. Zhao H., Elnasri I., Girard Y.: Perforation of aluminium foam core sandwich panels under impact loading—an experimental study. Int. J. Impact Eng. 34, 1246–1257 (2007)

    Article  Google Scholar 

  5. Hou, B., Ono, A., Abdennadher, S., et al.: Impact behavior of honeycombs under combined shear-compression, Part I Experiments. Int. J. Solids Struct. (2010). doi:10.1016/j.ijsolstr.2010.11.005 (in press)

  6. Zeng H.B., Pattofatto S., Zhao H. et al.: Perforation of sandwich plates with graded hollow sphere cores under impact loading. Int. J. Impact Eng. 37, 1083–1091 (2010)

    Article  Google Scholar 

  7. Klintworth J.W., Stronge W.J.: Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs. Int. J. Mech. Sci. 30(3-4), 273–292 (1998)

    Article  Google Scholar 

  8. Cui, X., Zhang, Y., Zhao, H., et al.: Stress concentration in two-dimensional lattices with imperfections. Acta Mech. (2010). doi:10.1007/s00707-010-0354-1

  9. Goldsmith W., Sackman J.L.: An experimental study of energy absorption in impact on sandwich plates. Int J. Impact Eng. 12(2), 241–262 (1992)

    Article  Google Scholar 

  10. Wu E., Jiang W.S.: Axial crush of metallic honeycombs. Int. J. Impact Eng. 19, 439–456 (1997)

    Article  Google Scholar 

  11. Zhao H., Gary G.: Crushing behaviour of aluminium honeycombs under impact loading. Int. J. Impact Eng. 21, 827–836 (1998)

    Article  Google Scholar 

  12. Deshpande V.S., Fleck N.A.: High strain rate compressive behaviour of aluminium. Int. J. Impact Eng. 24, 277–298 (2000)

    Article  Google Scholar 

  13. Mukai T., Kanahashi H., Miyoshi T. et al.: Experimental study of energy absorption in a closed cell aluminium foam under dynamic loading. Scr. Mater. 40, 921–927 (1999)

    Article  Google Scholar 

  14. Dannemann K.A., Lankford J.: High strain rate compression of closed-cell aluminium foams. Mater. Sci. Eng. A 293, 157–164 (2000)

    Article  Google Scholar 

  15. Reid S.R., Peng C.: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19, 531–570 (1997)

    Article  Google Scholar 

  16. Lopatnikov S.L., Gama B.A., Haque Md. J. et al.: Dynamics of metal foam deformation during Taylor cylinder–Hopkinson impact experiment. Compos. Struct. 61, 61–71 (2003)

    Article  Google Scholar 

  17. Lopatnikov S.L., Gama B.A., Haque Md. J. et al.: High-velocity plate impact of metal foams. Int. J. Impact Eng. 30, 421–445 (2004)

    Article  Google Scholar 

  18. Radford D.D., Deshpande V.S., Fleck N.A.: The use of metal foam projectile to simulate shock loading on a structure. Int. J. Impact Eng. 31, 1152–1171 (2005)

    Article  Google Scholar 

  19. Papka S.D., Kyriakides S.: Biaxial crushing of honeycombs— Part I: Experiments. Int. J. Solids Struct. 36, 4367–4396 (1999)

    Article  MATH  Google Scholar 

  20. Chung J., Waas A.M.: Compressive response of circular cell polycarbonate honeycombs under inplane biaxial static and dynamic loading. Part I: Experiments. Int. J. Impact Eng. 27, 729–754 (2002)

    Article  Google Scholar 

  21. Mohr D., Doyoyo M.: A new method for the biaxial testing of cellular Solids. Exp. Mech. 43(2), 174–183 (2003)

    Article  Google Scholar 

  22. Mohr D., Doyoyo M.: Experimental investigation on the plasticity of hexagonal aluminum honeycomb under multiaxial loading. J. Appl. Mech. 71, 375–385 (2004)

    Article  MATH  Google Scholar 

  23. Kintscher M., Kärger L., Wetzel A. et al.: Stiffness and failure behaviour of folded sandwich cores under combined transverse shear and compression. Compos. Part A 38, 1288–1295 (2007)

    Article  Google Scholar 

  24. Hong S.T., Pan J., Tyan T. et al.: Quasi-staitc crush behavior of aluminum honeycombs specimens under compression dominant combined loads. Int. J. Plast. 22, 73–109 (2006)

    Article  MATH  Google Scholar 

  25. Hong S.T., Pan J., Tyan T. et al.: Dynamic crush behaviors of aluminum honeycombs specimens under compression dominant inclined loads. Int. J. Plast. 24, 89–117 (2008)

    Article  Google Scholar 

  26. Chang F.S., Song Y., Lu D.X. et al.: Unified constitutive equations of foams materials. ASME J. Eng. Mater. Tech. 120, 212–217 (1998)

    Article  Google Scholar 

  27. Rehkopf J.D., Mcneice G.M., Borland G.W.: Fluid and Matrix components of polyurethane foam behaviour under cyclic compression. ASME J. Eng. Mater. Tech. 118, 58–62 (1996)

    Article  Google Scholar 

  28. Faruque O., Liu N., Chou C.: Strain rate dependent foam-constitutive modeling and applications, S.A.E Transactions. J. Mater. Manuf. 106, 904–912 (1997)

    Google Scholar 

  29. Schreyer H.L., Zuo Q.H., Maji A.K.: Anisotropic plasticity model for foams and honeycombs. ASCE J. Eng. Mech. 120, 1913–1930 (1994)

    Article  Google Scholar 

  30. Hopkinson B.: A method of measuring the pressure in the deformation of high explosives or by the impact of bullets. Philos. Trans. R. Soc. A213, 437–452 (1914)

    Google Scholar 

  31. Kolsky H.: An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. B62, 676–700 (1949)

    Google Scholar 

  32. Zhao H., Gary G.: On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains. Int. J. Solids Struct. 33(23), 3363–3375 (1996)

    Article  MATH  Google Scholar 

  33. Zhao H.: A constitutive model for metals over a large range of strain rates. Identification for mild–steel and aluminium sheets. Mater. Sci. Eng. A320, 95–99 (1997)

    Google Scholar 

  34. Zhao H.: A study of specimen thickness effects in the impact tests on polymers by numeric simulations. Polymer 39, 1103–1106 (1998)

    Article  Google Scholar 

  35. Rinde J.A., Hoge K.G.: Time and temperature dependence of the mechanical properties of polystyrene bead foam. J. Appl. Polymer Sci. 15, 1377–1395 (1971)

    Article  Google Scholar 

  36. Zhao H., Gary G.: Une nouvelle méthode de séparation des ondes pour l’analyse des essais dynamiques. C.R. Acad. Sci. Paris. 319 série II, 987–992 (1994)

    Google Scholar 

  37. Zhao H., Gary G.: A three dimensional analytical solution of longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar, Application to experimental techniques. J. Mech. Phys. Solids 43(8), 1335–1348 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  38. Davies R.M.: A critical study of Hopkinson pressure bar. Philos. Trans. R. Soc. A240, 375–457 (1948)

    Google Scholar 

  39. Gary G., Klepaczko J.R., Zhao H.: Correction de dispersion pour l’analyse des petites déformations aux barres de Hopkinson. J. Phys. 1 C1, 403–410 (1991)

    Google Scholar 

  40. Zhao H., Nasri I., Abdennadher S.: An experimental study on the behaviour under impact loading of metallic cellular materials. Int. J. Mech. Sci. 47, 757–774 (2005)

    Article  Google Scholar 

  41. Lehmhus D., Banhart J.: Properties of heat-treated aluminium foams. Mater. Sci. Eng. A 349, 98–110 (2003)

    Article  Google Scholar 

  42. Reid S.R., Peng C.: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19, 531–570 (1997)

    Article  Google Scholar 

  43. Elnasri I., Pattofatto S., Zhao H. et al.: Shock enhancement of cellular structures under impact loading: Part I Experiments. J. Mech. Phys. Solids 55, 2652–2671 (2007)

    Article  Google Scholar 

  44. Pattofatto S., Elnasri I., Zhao H. et al.: Shock enhancement of cellular structures under impact loading: Part II Analysis. J. Mech. Phys. Solids 55, 2672–2686 (2007)

    Article  Google Scholar 

  45. Budiansky, B., Hutchinson, J.W.: Dynamic buckling of imperfection sensitive structures. In: Proceedings of the 11th international congress of applied mechanics. Springer Verlag, Munich (1964)

  46. Gary G.: Dynamic buckling of an elastoplastic column. Int. J. Impact Eng. 2, 357–375 (1983)

    Article  Google Scholar 

  47. Calladine C.R., English R.W.: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. Int. J. Mech. Sci. 26(11–12), 689–701 (1984)

    Article  Google Scholar 

  48. Su X.Y., Yu T.X., Reid S.R.: Inertia sensitive impact energy-absorbing structures part I: Effects of inertia and elasticity. Int. J. Impact Eng. 16, 651–672 (1995)

    Article  Google Scholar 

  49. Tan P.J., Harrigan J.J., Reid S.R.: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Mater. Sci. Technol. 18, 480–488 (2002)

    Article  Google Scholar 

  50. Zhao H., Abdennadher S.: On the strength enhancement under impact loading of square tubes made from rate insensitive metals. Int. J. Solid Struct. 41, 6677–6697 (2004)

    Article  Google Scholar 

  51. Hild F., Raka B., Baudequin M. et al.: Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation. Appl. Opt. 41, 6815–6828 (2002)

    Article  Google Scholar 

  52. Hild F., Roux S.: Digital image correlation: from displacement measurement to identification of elastic properties, a review. Strain 42(2), 69–80 (2006)

    Article  Google Scholar 

  53. Hou, B., Pattofatto, S., Li, Y.L., et al.: Impact behavior of honeycombs under combined shear-compression, Part II Analysis. Int. J. Solids Struct. (2010). doi:10.1016/j.ijsolstr.2010.11.004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Ning Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, DN., Li, YL. & Zhao, H. On the behaviour characterization of metallic cellular materials under impact loading. Acta Mech Sin 26, 837–846 (2010). https://doi.org/10.1007/s10409-010-0392-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-010-0392-x

Keywords

Navigation