Skip to main content
Log in

Mechanics of advanced fiber reinforced lattice composites

  • Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Fiber reinforced lattice composites are light-weight attractive due to their high specific strength and specific stiffness. In the past 10 years, researchers developed three-dimensional (3D) lattice trusses and two-dimensional (2D) lattice grids by various methods including interlacing, weaving, interlocking, filament winding and molding hot-press. The lattice composites have been applied in the fields of radar cross-section reduction, explosive absorption and heat-resistance. In this paper, topologies of the lattice composites, their manufacturing routes, as well as their mechanical and multifunctional applications, were surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deshpande V.S., Fleck N.A., Ashby M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001)

    Article  MATH  Google Scholar 

  2. Deshpande V.S., Ashby M.F., Fleck N.A.: Foam topology bending versus stretching dominated architectures. Acta Materilia 49, 1035–1040 (2001)

    Article  Google Scholar 

  3. Ashby M.F., Evans A.G., Fleck N.A. et al.: Metal Foams: A Design Guide. Butterworth-Heinemann, Boston (2000)

    Google Scholar 

  4. Evans A.G.: Lightweight materials and structures. MRS Bull. 26, 790–797 (2001)

    Google Scholar 

  5. Evans A.G., Hutchinson J.W., Fleck N.A. et al.: The topology design of multifunctional cellular metals. Prog. Mater. Sci. 46, 309–327 (2001)

    Article  Google Scholar 

  6. Fan H.L., Fang D.N.: Structural mechanics of lattice grids. Adv. Mech. 38, 1–18 (2008) (in Chinese)

    Google Scholar 

  7. Fan H.L., Yang W.: Development of lattice materials with high specific stiffness and strength. Adv. Mech. 37, 99–112 (2007) (in Chinese)

    Google Scholar 

  8. Wallach J.C., Gibson L.J.: Mechanical behavior of a three-dimensional truss material. Int. J. Solids Struct. 38, 7181–7196 (2001)

    Article  MATH  Google Scholar 

  9. Deshpande V.S., Fleck N.A., Ashby M.F.: Yield of truss core sandwich beams in 3-point bending. Int. J. Solids Struct. 38, 6275–6305 (2001)

    Article  MATH  Google Scholar 

  10. Brittain S.T., Sugimura Y., Schueller O.J.A. et al.: Fabrication and mechanical performance of a mesoscale space-filling truss system. J. Microelectromech. Syst. 10, 113–120 (2001)

    Article  Google Scholar 

  11. Wicks N., Hutchinson J.W.: Optimal truss plates. Int. J. Solids Struct. 38, 5165–5183 (2001)

    Article  MATH  Google Scholar 

  12. Wicks N., Hutchinson J.W.: Performance of sandwich plates with truss cores. Mech. Mater. 36, 739–751 (2004)

    Article  Google Scholar 

  13. Kooistra G.W., Deshpande V.S., Wadley H.N.G.: Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium. Acta Materialia 52, 4229–4237 (2004)

    Article  Google Scholar 

  14. Wadley H.N.G., Fleck N.A., Evans A.G.: Fabrication and structural performance of periodic cellular metal sandwich structures. Compos. Sci. Technol. 63, 2331–2343 (2003)

    Article  Google Scholar 

  15. Fan H.L., Fang D.N.: Topology and corresponding mechanical properties of cellular materials. J. Tsinghua Univ. (Sci. Technol.) 47, 2072–2075 (2007) (in Chinese)

    Google Scholar 

  16. Gibson L.J., Ashby M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  17. Kollar L., Hegedus I.: Analysis and Design of Space Frames by the Continuum Method. Elsevier, Amsterdam (1985)

    Google Scholar 

  18. Fan H.L., Yang W.: The equivalent continuum method of lattice structures. Acta Mechanica Solida Sinica 19, 103–113 (2006)

    Google Scholar 

  19. Fan H.L., Jin F.N., Fang D.N.: Mechanical properties of lattice grid composites. Acta Mechanica Sinica 24, 409–418 (2008)

    Article  Google Scholar 

  20. Zhang Y.H., Fan H.L., Fang D.N.: Constitutive relations and failure criterion of planar lattice composites. Compos. Sci. Technol. 68, 3299–3304 (2008)

    Article  Google Scholar 

  21. Fan H.L., Fang D.N., Jin F.N.: Yield surfaces and micro-failure mechanism of block lattice truss materials. Mater. Des. 29, 2038–2042 (2008)

    Article  Google Scholar 

  22. Fan H.L., Fang D.N.: Anisotropic mechanical properties of lattice grid composites. J. Compos. Mater. 42, 2445–2460 (2008)

    Article  Google Scholar 

  23. Fan H.L., Jin F.N., Fang D.N.: Uniaxial local buckling strength of periodic lattice composites. Mater. Des. 30, 4136–4145 (2009)

    Article  Google Scholar 

  24. Fan H.L., Jin F.N., Fang D.N.: Characterization of edge effects of composite lattice structures. Compos. Sci. Technol. 69, 1896–1903 (2009)

    Article  Google Scholar 

  25. Fan H.L., Jin F.N., Fang D.N.: Nonlinear mechanical properties of lattice truss materials. Mater. Des. 30, 511–517 (2009)

    Article  Google Scholar 

  26. Fan H.L., Yang W., Wang B. et al.: Design and manufacturing of a composite lattice structure reinforced by continuous carbon fibers. Tsinghua Sci. Technol. 11, 515–522 (2006)

    Article  Google Scholar 

  27. Fan H.L., Meng F.H., Yang W.: Mechanical behaviors of carbon fiber reinforced lattice materials and bending effects. Arch. Appl. Mech. 75, 635–647 (2006)

    Article  MATH  Google Scholar 

  28. Yan, S., Zeng, T., Fang, D.N., et al.: Shear behavior of carbon/epoxy pyramidal truss sandwich panels. In: The 1st International Conference on Advanced Polymer and Polymer Composites. 13–15 July 2010, Harbin, China (2010)

  29. Zeng, T., Fang, D.N., Yan, S., et al.: Compressive properties of carbon epoxy composite sandwich panels with pyramidal truss core. In: Joint-Symposium on Mechanics of Advanced Materials & Structures. 11–15 August 2010, Harbin, China (2010)

  30. Xiong J., Ma L., Wu L.Z. et al.: Fabrication and crushing behavior of low density carbon fiber composite pyramidal truss structures. Compos. Struct. 92, 2695–2702 (2010)

    Article  Google Scholar 

  31. Wang B., Wu L.Z., Jin X. et al.: Experimental investigation of 3D sandwich structure with core reinforced by composite columns. Mater. Des. 31, 158–165 (2010)

    Article  Google Scholar 

  32. Fan H.L., Meng F.H., Yang W.: Sandwich panels with Kagome lattice cores reinforced by carbon fibers. Compos. Struct. 81, 533–539 (2007)

    Article  Google Scholar 

  33. Fan H.L., Fang D.N., Chen L.M. et al.: Making and testing of a CFRC sandwich cylinder with Kagome cores. Compos. Sci. Technol. 69, 2695–2700 (2009)

    Article  Google Scholar 

  34. Kim T.D.: Fabrication and testing of composite isogrid stiffened cylinder. Compos. Struct. 45, 1–6 (1999)

    Article  Google Scholar 

  35. Fan H.L., Zhou Q., Yang W. et al.: An experiment study on the failure mechanisms of woven textile sandwich panels under quasi-static loading. Compos. Part B 41, 686–692 (2010)

    Article  Google Scholar 

  36. Caulfield J., Karlsson A.M.: Crushing of a textile core sandwich panel. AIAA J. 44, 1339–1344 (2006)

    Article  Google Scholar 

  37. Sypeck D.J., Wadley H.N.G.: Multifunctional microtruss laminates: textile synthesis and properties. J. Mater. Res. 16, 890–897 (2001)

    Article  Google Scholar 

  38. Fan H.L., Yang W., Chao Z.M.: Microwave absorbing composite lattice grids. Compos. Sci. Technol. 67, 3472–3479 (2007)

    Article  Google Scholar 

  39. Chen M.J., Pei Y.M., Fang D.N.: Computational method for radar absorbing composite lattice grids. Comput. Mater. Sci. 46, 591–594 (2009)

    Article  Google Scholar 

  40. Fan H.L., Fang D.N.: Enhancement of mechanical properties of hollow strut foams: analysis. Mater. Des. 30, 1659–1666 (2009)

    Article  MathSciNet  Google Scholar 

  41. Fan H.L., Jin F.N., Fang D.N.: Mechanical properties of hierarchical cellular materials: part I. Analysis. Compos. Sci. Technol. 68, 3380–3387 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Ning Fang.

Additional information

The project was supported by the National High Technology Research and Development Program of China (2007AA03Z547), the National Basic Research Program of China (G2006CB601202), the National Natural Science Foundations of China (10702033, 90816025, 10632060 and 10328203), Fund of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials of Donghua University (K0820), Fund of State Key Laboratory of Automotive Safety and Energy of Tsinghua University (KF09132), the Opening Project of Key Laboratory for Advanced Building Materials of Sichuan Province and Funds of State Key Laboratory of Explosion Science and Technology (KFJJ08-15 and KFJJ10-16M).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, HL., Zeng, T., Fang, DN. et al. Mechanics of advanced fiber reinforced lattice composites. Acta Mech Sin 26, 825–835 (2010). https://doi.org/10.1007/s10409-010-0390-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-010-0390-z

Keywords

Navigation