Skip to main content
Log in

Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this article, transverse free vibrations of axially moving nanobeams subjected to axial tension are studied based on nonlocal stress elasticity theory. A new higher-order differential equation of motion is derived from the variational principle with corresponding higher-order, non-classical boundary conditions. Two supporting conditions are investigated, i.e. simple supports and clamped supports. Effects of nonlocal nanoscale, dimensionless axial velocity, density and axial tension on natural frequencies are presented and discussed through numerical examples. It is found that these factors have great influence on the dynamic behaviour of an axially moving nanobeam. In particular, the nonlocal effect tends to induce higher vibration frequencies as compared to the results obtained from classical vibration theory. Analytical solutions for critical velocity of these nanobeams when the frequency vanishes are also derived and the influences of nonlocal nanoscale and axial tension on the critical velocity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skutch R.: Über die Bewegung eines gespannten Fadens welcher gezwungen ist, durch zwei feste Punkte mit einer konstanten Geschwindigkeit zu gehen und zwischen denselben in transversale Schwingungen von geringer Amplitude versetzt wird. Annalen der Physik und Chemie 61, 190–195 (1897) (in German)

    Article  Google Scholar 

  2. Carrier G.F.: The spaghetti problem. Am. Math. Monthly 56, 669–672 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  3. Donath, G.: Transversale Schwingungen eines in Längsrichtung durch zwei feste Einspannungen bewegten Stabes. PhD Thesis, Technische Universität Berlin, Berlin (1959) (in German)

  4. Ashley H., Haviland G.: Bending vibration of a pipe line containing flowing fluid. ASME J. Appl. Mech. 17, 229–232 (1950)

    MathSciNet  Google Scholar 

  5. Hwang S.J., Perkins N.C.: Supercritical stability of an axially moving beam. Part II. Vibration and stability analyses. J. Sound Vib. 154, 397–409 (1992)

    Article  Google Scholar 

  6. Oz H.R., Pakdemirli M.: Vibrations of an axially moving beam with time-dependent velocity. J. Sound Vib. 22(7), 239–257 (1999)

    Article  Google Scholar 

  7. Pellicano F., Vestroni F.: Complex dynamics of high-speed axially moving systems. J. Sound Vib. 25(8), 31–44 (2002)

    Article  Google Scholar 

  8. Ozkaya E., Oz H.R.: Determination of natural frequencies and stability regions of axially moving beams using artificial neural networks method. J. Sound Vib. 25(2), 782–789 (2002)

    Article  Google Scholar 

  9. Chen L.Q., Wu J.: Bifurcation in transverse vibration of axially accelerating viscoelastic strings. Acta Mech. Solida Sinica 26, 83–86 (2005)

    Google Scholar 

  10. Chen L.Q., Zu J.W., Wu J.: Principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string. Acta Mech. Sinica 20(3), 307–316 (2004)

    Article  Google Scholar 

  11. Wang Y.F., Huang L.H., Liu X.T.: Eigenvalue and stability analysis for transverse vibrations of axially moving strings based on Hamiltonian dynamics. Acta Mech. Sinica 21(5), 485–494 (2005)

    Article  MathSciNet  Google Scholar 

  12. Chen L.Q., Lim C.W., Ding H.: Energetics and conserved quantity of an axially moving string undergoing three-dimensional nonlinear vibration. Acta Mech. Sinica 24(2), 215–221 (2008)

    Article  MathSciNet  Google Scholar 

  13. Zheng Q., Jiang Q.: Multiwalled carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 88(4), 045503 (2002)

    Article  Google Scholar 

  14. Legoas S.B., Coluci V.R., Braga S.F. et al.: Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 90(5), 055504 (2003)

    Article  Google Scholar 

  15. Eringen A.C., Speziale C.G., Kim B.S.: Crack tip problem in nonlocal elasticity. J. Mech. Phys. Solids 25, 339–355 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eringen A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Article  MATH  Google Scholar 

  17. Eringen A.C., Edelen D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  19. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  20. Yu J.L., Zheng Z.M.: A model of nonlocal elastic–plastic continuum applied to the stress distribution near a crack tip. Acta Mech. Sinica 16, 485–494 (1984) (in Chinese)

    Google Scholar 

  21. Ece M.C., Aydogdu M.: Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190(1–4), 185–195 (2007)

    Article  MATH  Google Scholar 

  22. Wang Q., Liew K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236–242 (2007)

    Article  Google Scholar 

  23. Liang J., Wu S.P., Du S.Y.: The nonlocal solution of two parallel cracks in functionally graded materials subjected to harmonic anti-plane shear waves. Acta Mech. Sinica 23(4), 427–435 (2007)

    Article  Google Scholar 

  24. Wang Q., Zhou G.Y., Lin K.C.: Scale effect on wave propagation of double-walled carbon nanotubes. Int. J. Solids Struct. 43, 6071–6084 (2006)

    Article  MATH  Google Scholar 

  25. Wang C.M., Zhang Y.Y., Ramesh S.S. et al.: Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D: Appl. Phys. 39, 3904–3909 (2006)

    Article  Google Scholar 

  26. Lee H.L., Chang W.J.: Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium. Phys. E 41, 529–532 (2009)

    Article  Google Scholar 

  27. Ru C.Q.: Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys. Rev. B 62, 16962–16967 (2000)

    Article  Google Scholar 

  28. Lim C.W., Wang C.M.: Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams. J. Appl. Phys. 101, 054312 (2007)

    Article  Google Scholar 

  29. Lu P., Lee H.P., Lu C. et al.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99, 073510 (2006)

    Article  Google Scholar 

  30. Wang Q., Varadan V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659–666 (2006)

    Article  Google Scholar 

  31. Zhang Y.Q., Liu G.R., Xie X.Y.: Free transverse vibration of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71, 195404 (2005)

    Article  Google Scholar 

  32. Lim, C.W.: A discussion on the physics and truth of nanoscales for vibration of nanobeams based on nonlocal elastic stress field theory. In: Seventh International Symposium on Vibrations of Continuous Systems, Zakopane, Poland, pp. 42–44 (2009)

  33. Lim C.W.: Equilibrium and static deflection for bending of a nonlocal nanobeam. Adv. Vib. Eng. 8(4), 277–300 (2009)

    Google Scholar 

  34. Lim C.W.: Nanoscale for nanobeams based on the theory of nonlocal elastic stress field: equilibrium, governing equation and static deflection. Appl. Math. Mech.-Eng. Ed. 31(1), 1–19 (2010)

    Article  Google Scholar 

  35. Lim C.W., Li C., Yu J.L.: The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams. Interaction Multiscale Mech. 2(3), 223–233 (2009)

    Google Scholar 

  36. Lim C.W., Yang Y.: New predictions of size-dependent nanoscale based on nonlocal elasticity for wave propagation in carbon nanotubes. J. Comput. Theor. Nanosci. 7(6), 988–995 (2010)

    Article  Google Scholar 

  37. Lim, C.W., Yang, Y.: Wave propagation in carbon nanotubes: nonlocal elasticity induced stiffness and velocity enhancement effects. J. Mech. Mater. Struct. (2010, in press)

  38. Lim C.W., Niu J.C., Yu Y.M.: Nonlocal stress theory for buckling instability of nanotubes: New predictions on stiffness strengthening effects of nanoscales. J. Comput. Theor. Nanosci. 7(10), 2104–2111 (2010)

    Article  Google Scholar 

  39. Oz H.R., Pakdemirli M.: Vibrations of an axially moving beam with time-dependent velocity. J. Sound Vib. 227, 239–257 (1999)

    Article  Google Scholar 

  40. Pakdemirli M., Oz H.R.: Infinite mode analysis and truncation to resonant modes of axially accelerating beam vibrations. J. Sound Vib. 311, 1052–1074 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Lim.

Additional information

The project was supported by a collaboration scheme from University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Institute and by City University of Hong Kong (7002472 (BC)).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, C.W., Li, C. & Yu, JL. Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta Mech Sin 26, 755–765 (2010). https://doi.org/10.1007/s10409-010-0374-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-010-0374-z

Keywords

Navigation