Skip to main content
Log in

Calculation of Hugoniot properties for shocked nitromethane based on the improved Tsien’s EOS

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We have calculated the Hugoniot properties of shocked nitromethane based on the improved Tsien’s equation of state (EOS) that optimized by “exact” numerical molecular dynamic data at high temperatures and pressures. Comparison of the calculated results of the improved Tsien’s EOS with the existed experimental data and the direct simulations show that the behavior of the improved Tsien’s EOS is very good in many aspects. Because of its simple analytical form, the improved Tsien’s EOS can be prospectively used to study the condensed explosive detonation coupling with chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winey J.M., Duvall G.E., Knudson M.D., Gupta Y.M.: Equation of state and temperature measurements for shocked nitromethane. J. Chem. Phys. 113, 7492–7501 (2000)

    Article  Google Scholar 

  2. Cowperthwaite M., Shaw R.: C V (T) equation of state for liquids. Calculation of the shock temperature of carbon tetrachloride, nitromethane, and water in the 100-kbar region. J. Chem. Phys. 53, 555–560 (1970)

    Article  Google Scholar 

  3. Shaw R.: Calculated shock temperatures of liquid TNT, nitromethane, and four liquid bis(Difluoramino) alkanes. J. Chem. Phys. 54, 3657–3658 (1971)

    Article  Google Scholar 

  4. Lysne P.C., Hardesty D.R.: Fundamental equation of state of liquid nitromethane to 100 kbar. J. Chem. Phys. 59, 6512–6523 (1973)

    Article  Google Scholar 

  5. Tsien H.S.: Thermodynamic properties of gas at high temperatures and pressures. Jet Propulsion 25, 471–473 (1955)

    Google Scholar 

  6. Wentorf J.R.H., Buehler R.J., Hirschfelder J.O., Curtiss C.F.: Lennard–Jones and devonshire equation of state of compressed gases and liquids. J. Chem. Phys. 18, 1484–1500 (1950)

    Article  Google Scholar 

  7. Zhao B., Cui J.P., Fan J.: Equation of state in high-temperature and high-pressure gases and an improvement of Tsien’s EOS. Chin. J. Theor. Appl. Mech. 42(2), 151–158 (2010)

    Google Scholar 

  8. Sheffield S.A., Duvall G.E.: Response of liquid carbon disulfide to shock compression: equation of state at normal and high densities. J. Chem. Phys. 79, 1981–1990 (1983)

    Article  Google Scholar 

  9. Sutherland G.T., Gupta Y.M., Bellamy P.M.: Pressure-time profile of multiply shocked carbon-disulfide. J. Appl. Phys 59, 1141–1146 (1986)

    Article  Google Scholar 

  10. Campbell A.W., Davis W.C., Travis J.R.: Shock initiation of detonation in liquid explosives. Phys. Fluids 4, 498–510 (1961)

    Article  Google Scholar 

  11. Walker F.E., Wasley R.J.: Initiation of nitromethane with relatively long-duration, low-amplitude shock waves. Combust. Flame 15, 233–246 (1970)

    Article  Google Scholar 

  12. Hardesty D.R.: An investigation of the shock initiation of liquid nitromethane. Combust. Flame 27, 229–251 (1976)

    Article  Google Scholar 

  13. Winey J.M., Gupta Y.M.: Visible absorption spectroscopy to examine shock-induced decomposition in neat nitromethane. J. Phys. Chem. A 101, 9333–9340 (1997)

    Article  Google Scholar 

  14. Hirschfelder J.O., Curtiss C.F., Bird R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1954)

    MATH  Google Scholar 

  15. Tsai D.H.: The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 70, 1375–1382 (1979)

    Article  Google Scholar 

  16. Jones, H.D.: Equation of State for Liquid Nitromethane at High Pressures. Shock Compression of Condensed Matter 2003, Portland, Oregon, pp. 149–152 (2004)

  17. Sorescu D.C., Rice B.M., Thompson D.L.: Molecular dynamics simulations of liquid nitromethane. J. Phys. Chem. A 105, 9336–9346 (2001)

    Article  Google Scholar 

  18. Liu H., Zhao J.J., Ji G.F., Gong Z.Z., Wei D.Q.: Compressibility of liquid nitromethane in the high-pressure regime. Phys. B Condens. Matter 382, 334–339 (2006)

    Article  Google Scholar 

  19. Alper H.E., Abu-Awwad F., Politzer P.: Molecular dynamics simulations of liquid nitromethane. J. Phys. Chem. B 103, 9738–9742 (1999)

    Article  Google Scholar 

  20. Burcat A.: Thermodynamic properties of ideal gas nitro and nitrate compounds. J. Phys. Chem. Reference Data 28, 63–130 (1999)

    Article  Google Scholar 

  21. Pangilinan G.I., Gupta Y.M.: Time-resolved raman measurements in nitromethane shocked to 140 kbar. J. Phys. Chem. 98, 4522–4529 (1994)

    Article  Google Scholar 

  22. Hablot O., Soulard L.: Shock decomposition of nitromethane, pp. 857–860. Shock Compression of Condensed Matter-1999. Snowbird, Utah (2000)

    Google Scholar 

  23. Soulard, L.: Molecular dynamics and experimental study of shock polarization of nitromethane. In: 12th APS Topical Conference, Shock Compression of Condensed Matter-2001, Atlanta, Georgia, pp. 347–350 (2002)

  24. Tee L.S., Gotoh S., Stewart W.E.: Molecular parameters for normal fluids. I&EC Fundam 5, 12 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ping Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, B., Cui, JP. & Fan, J. Calculation of Hugoniot properties for shocked nitromethane based on the improved Tsien’s EOS. Acta Mech Sin 26, 365–370 (2010). https://doi.org/10.1007/s10409-010-0345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-010-0345-4

Keywords

Navigation