Skip to main content
Log in

Peierls stress for 〈110〉{001} mixed dislocation in SrTiO3 within framework of constrained path approximation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The core structure of 〈110〉{001} mixed dislocation in perovskite SrTiO3 is investigated with the modified two-dimensional Peierls–Nabarro dislocation equation considering the discreteness effect of crystals. The results show that the core structure of mixed dislocation is independent of the unstable energy in the 〈100〉 direction, but closely related to the unstable energy in the 〈110〉 direction which is the direction of total Burgers vector of mixed dislocation. Furthermore, the ratio of edge displacement to screw one nearly equals to the tangent of dislocation angle for different unstable energies in the 〈110〉 direction. Thus, the constrained path approximation is effective for the 〈110〉{001} mixed dislocation in SrTiO3 and two-dimensional equation can degenerate into one-dimensional equation that is only related to the dislocation angle. The Peierls stress for 〈110〉{001} dislocations can be expediently obtained with the one-dimensional equation and the predictive values for edge, mixed and screw dislocations are 0.17, 0.22 and 0.46 GPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jia C.L., Thust A., Urban K.: Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core. Phys. Rev. Lett. 95, 225506 (2005)

    Article  Google Scholar 

  2. Zhang Z.L., Sigle W., Rühle M.: Atomic and electronic characterization of the [100] dislocation core in SrTiO3. Phys. Rev. B. 66, 094108 (2002)

    Article  Google Scholar 

  3. Hirth J.P., Lothe J.: Theory of Dislocations. Wiley, New York (1982)

    Google Scholar 

  4. Xiang Y.: Modelling dislocations at different scales. Commun. Comput. Phys. 1, 383–424 (2006)

    Google Scholar 

  5. Chisholm F.M., Kumar S., Hazzledine P.: Dislocations in complex materials. Nature 307, 701–703 (2005)

    Google Scholar 

  6. Zhang, D.B., Wang, T.C., Wei, Y.G.: A new method to analyse the Peierls–Nabarro model of an edge dislocation in a rectangular plate. In: 2nd International Conference on Heterogeneous Material Mechanics, Huangshan, China, June, pp. 21–25 (2008)

  7. Carrez P., Ferré D., Cordier P.: Implicatioins for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals. Nature 446, 68–70 (2007)

    Article  Google Scholar 

  8. Durinck J., Carrez P., Cordier P.: Application of the Peierls– Nabarro model to dislocations in forsterite. Eur. J. Miner. 19, 631–639 (2007)

    Article  Google Scholar 

  9. Ferré D., Carrez P., Cordier P.: First principle determination of dislocations properties of MgSiO3 perovskite at 30 GPa based on the Peierls–Nabarro model. Phys. Earth Planet. Interiors 163, 283–291 (2007)

    Article  Google Scholar 

  10. Ferré D., Carrez P., Cordier P.: Modeling dislocation cores in SrTiO3 using the Peierls–Nabarro model. Phys. Rev. B. 77, 014106 (2008)

    Article  Google Scholar 

  11. Ferré D., Cordier P., Carrez P.: Dislocation modeling in calcium silicate perovskite based on the Peierls–Nabarro model. Am. Miner. 94, 135–142 (2009)

    Article  Google Scholar 

  12. Wang S.F.: Lattice theory for structure of dislocations in a two-dimensional triangular crystal. Phys. Rev. B. 65, 094111 (2002)

    Article  Google Scholar 

  13. Wang S.F.: An improvement of the Peierls equation by taking into account the lattice effects. Chin. Phys. 14, 2575–2584 (2005)

    Article  Google Scholar 

  14. Wang S.F.: A unified dislocation equation from lattice statics. J. Phys. A Math. Theor. 42, 025208 (2009)

    Article  Google Scholar 

  15. Wang S.F., Liu R.P., Wu X.Z.: The discrete correction of the core structure for the 〈100〉{010} edge dislocation in bcc Fe. J. Phys Condens. Matter. 20, 485207 (2008)

    Article  Google Scholar 

  16. Yan J.A., Wang C.Y., Wang S.Y.: Generalized–stacking–fault energy and dislocation properties in bcc Fe: a first–principle study. Phys. Rev. B. 70, 174015 (2004)

    Google Scholar 

  17. Wu X.Z., Wang S.F., Liu R.P.: On the core structure and mobility of 〈100〉{010} and \({ \langle 100 \rangle \{01\overline 1 \}}\) dislocations in B2 structure YAg and YCu. Chin. Phys. B. 18, 2905–2911 (2009)

    Article  Google Scholar 

  18. Joós B., Ren Q., Duesbery M.S.: Peierls–Nabarro model of dislocations in silicon with generalized stacking–fault restoring forces. Phys. Rev. B. 50, 5890–5898 (1994)

    Article  Google Scholar 

  19. Hartford J., Sydow B., Wahnstrom G., Lundqvist B.I.: Peierls barries and stress for edge dislocations in Pd and Al calculated from first principles. Phys. Rev. B. 58, 2487–2496 (1998)

    Article  Google Scholar 

  20. Mryasov O.N., Gornostyrev Y.N., Freeman A.J.: Generalized stacking-fault energetics and dislocation properties: Compact versus spread unit-dislocation structures in TiAl and CuAu. Phys. Rev. B. 58, 11927–11932 (1998)

    Article  Google Scholar 

  21. Christian J.W., Vitek V.: Dislocations and stacking faults. Rep. Prog. Phys. 33, 307–411 (1970)

    Article  Google Scholar 

  22. Zhang Y., Yao Y.G.: The two-dimensional Peierls–Nabarro model for interfacial misfit dislocation networks of cubic lattice. Eur. Phys. J. B. 55, 355–362 (2007)

    Article  Google Scholar 

  23. Wang S.F., Wu X.Z., Wang Y.F.: Variational principle for the dislocation equation in lattice theory. Phys. Scr. 76, 593–596 (2007)

    Article  Google Scholar 

  24. Wu X.Z., Wang S.F.: On the properties of 〈111〉{110} dissociated superdislocation in B2 structure YAg and YCu: core structure and the Peierls stress. Front. Mater. Sci. China 3, 205–211 (2009)

    Article  Google Scholar 

  25. Fang Q.F., Wang R.: Atomistic simulation of the atomic structure and diffusion within the core region of an edge dislocation in aluminum. Phys. Rev. B. 62, 9317–9324 (2000)

    Article  Google Scholar 

  26. Xiang Y., Wei H., Ming P.B., Weinan E.: A generalized Peierls–Nabarro model for curved dislocations and core structures of dislocation loops in Al and Cu. Acta Mater. 56, 1447–1460 (2008)

    Article  Google Scholar 

  27. Lu G., Kioussis N., Bulatov V.V., Kaxiras E.: Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B. 62, 3099–3108 (2000)

    Article  Google Scholar 

  28. Wang S.F.: Dislocation energy and the Peierls stress: a rigorous calculation from the lattice theory. Chin. Phys. 15, 1301–1309 (2006)

    Article  Google Scholar 

  29. Wu X.Z., Wang S.F.: Application of parametric derivation method to the calculation of Peierls energy and the Peierls stress in lattice theory. Acta Mech. Solida Sin. 20, 363–368 (2007)

    Google Scholar 

  30. Nabarro F.R.N.: Theoretical and experimental estimates of the Peierls stress. Philos. Mag. A. 75, 703–711 (1997)

    Article  Google Scholar 

  31. Gschneidner K.A., Russell A., Pecharsky A., Morris J., Zhang Z., Lograsso T., Hsu D., Lo C., Ye Y., Slager A., Kesse D.: A family of ductile intermetallic compounds. Nat. Mater. 2, 587–590 (2003)

    Article  Google Scholar 

  32. Gschneidner K.A.: The magnetocaloric effect, magnetic refrigeration and ductile intermetallic compounds. Acta Mater. 57, 18–28 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhi Wu.

Additional information

The project was supported by the National Natural Science Foundation of China (10774196), Science Foundation Project of CQ CSTC (2006BB4156) and Chongqing University Postgraduates’ Science and Innovation Fund (200707A1A0030240).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Wang, S. & Liu, R. Peierls stress for 〈110〉{001} mixed dislocation in SrTiO3 within framework of constrained path approximation. Acta Mech Sin 26, 425–432 (2010). https://doi.org/10.1007/s10409-009-0320-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0320-0

Keywords

Navigation