Skip to main content
Log in

Parametric study of control mechanism of cortical bone remodeling under mechanical stimulus

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological–mechanical therapies to treat bone loss diseases such as osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robling A.G., Castillo A.B., Turner C.H.: Biomechanical and molecular regulation of bone remodeling. Annu. Rev. 8, 455–498 (2006)

    Google Scholar 

  2. Frost H.M.: Intermediary Organization of the Skeleton. CRC Press, Boca Raton (1986)

    Google Scholar 

  3. Moroz A., Crane M.C., Smith G., Wimpenny D.I.: Phenomenological model of bone remodeling cycle containing osteocyte regulation loop. Biosystems 84, 183–190 (2006)

    Article  Google Scholar 

  4. Nijweide P.J., Burger E.H., Klein-Nulend J.: The Osteocyte. Academic Press, San Diego (2002)

    Google Scholar 

  5. Knothe Tate M.L., Steck R., Forwood M.R., Niederer P.: In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J. Exp. Biol. 203, 2737–2745 (2000)

    Google Scholar 

  6. Weinbaum S., Cowin S.C., Zeng Y.: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360 (1994)

    Article  Google Scholar 

  7. Klein-Nulend J., Bacabac R.G., Mullender M.G.: Mechanobiology of bone tissue. Pathol. Biol. 53, 576–580 (2005)

    Article  Google Scholar 

  8. Bakker A.D., Soejima K., Klein-Nulend J., Burger E.H.: The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. J. Biomech. 34, 671–677 (2001)

    Article  Google Scholar 

  9. Bacabac R.G., Smit T.H., Mullender M.G., Dijcks S.J., Loon J.J.V., Klein-Nulend J.: Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem. Biophys. Res. Commun. 315, 823–829 (2004)

    Article  Google Scholar 

  10. Mullender M., El Haj A., Yang Y., van Duin M., Burger E., Klein-Nulend J.: Mechanotransduction of bone cellsin vitro: mechanobiology of bone tissue. Med. Biol. Eng. Comput. 42, 14–21 (2004)

    Article  Google Scholar 

  11. Ajubi N.E., Klein-Nulend J., Nijweide P.J., Vrijheid-Lammers T., Alblas M.J., Burger E.H.: Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes-a cytoskeleton-dependent process. Biochem. Biophys. Res. Commun. 225, 62–68 (1996)

    Article  Google Scholar 

  12. Ajubi N.E., Klein-Nulend J., Alblas M.J., Burger E.H., Nijweide P.J.: Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am. J. Physiol. Endocrinol. Metab. 276, E171–E178 (1999)

    Google Scholar 

  13. Burger E.H., Klein-Nulend J.: Mechanotransduction in bone-role of the lacuno-canalicular network. FASEB J. 13, 101–112 (1999)

    Google Scholar 

  14. Chambers T.J., Fox S., Jagger C.J., Lean J.M., Chow J.W.M.: The role of prostaglandins and nitric oxide in the response of bone to mechanical forces. Osteoarthr. Cartil. 7, 422–423 (1999)

    Article  Google Scholar 

  15. Bakker A., Klein-Nulend J., Burger E.: Mechanotransduction in bone cells proceeds via activation of COX-2, but not COX-1. Biochem. Biophys. Res. Commun. 305, 677–683 (2003)

    Article  Google Scholar 

  16. Joldersma M., Klein-Nulend J., Oleksik A.M., Heyligers I.C., Burger E.H.: Estrogen enhances mechanical stress-induced prostaglandin production by bone cells from elderly women. Am. J. Physiol. Endocrinol. Metab. 280, E436–E442 (2001)

    Google Scholar 

  17. Klein-Nulend J., Sterck J.G.H., Sterck J.G.H., Semeins C.M., Lips P., Joldersma M., Baart J.A., Burger E.H.: Donor age and mechanosensitivity of human bone cells. Osteoporosis Int. 13, 137–146 (2002)

    Article  Google Scholar 

  18. Wang F.S., Wang C.J., Chen Y.J., Huang Y.T., Huang H.C., Chang P.R., Sun Y.C., Yang K.D.: Nitric oxide donor increases osteoprotegerin production and osteoclastogenesis inhibitory activity in bone marrow stromal cells from ovariectomized rats. Endocrinology 145, 2148–2156 (2004)

    Article  Google Scholar 

  19. Burger E.H., Klein-Nulend J., Smit T.H.: Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon-proposal. J. Biomech. 36, 1453–1459 (2003)

    Article  Google Scholar 

  20. van’T Hof R.J., Ralston S.H.: Nitric oxide and bone. Immunology 103, 255–261 (2001)

    Article  Google Scholar 

  21. Fan X., Roy E., Zhu L., Murphy T.C., Ackert-Bicknell C., Hart C.M., Rosen C., Nanes M.S., Rubin J.: Nitric oxide regulates receptor activator of nuclear factor-{kappa}B ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology 145, 751–759 (2004)

    Article  Google Scholar 

  22. Machwate M., Harada S., Leu C.T., Seedor G., Labelle M., Gallant M., Hutchins S., Lachance N., Sawyer N., Slipetz D., Metters K.M., Rodan S.B., Young R., Rodan G.A.: Prostaglandin receptor EP4 mediates the bone anabolic effects of PGE2. Mol. Pharmacol. 60, 36–41 (2001)

    Google Scholar 

  23. Keila S., Kelner A., Weinreb M.: Systemic prostaglandin E2 increases cancellous bone formation and mass in aging rats and stimulates their bone marrow osteogenic capacity in vivo and in vitro. J. Endocrinol. 168, 131–139 (2001)

    Article  Google Scholar 

  24. Raisz L.G.: Physiology and pathophysiology of bone remodeling. Clin. Chem. 45, 1353–1358 (1999)

    Google Scholar 

  25. Mullender M.G., Huiskes R., Weinans H.: A physiological approach to the simulation of bone remodeling as a self organization control process. J. Biomech. 27, 1389–1394 (1994)

    Article  Google Scholar 

  26. Huiskes R., Ruimerman R., van Lenthe G.H., Janssen J.D.: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405, 704–706 (2000)

    Article  Google Scholar 

  27. Ruimerman R., Huiskes R., van Lenthe G.H., Janssen J.D.: A computer-simulation model relating bone-cell metabolism to mechanical adaptation of trabecular architecture. Comput Methods Biomech. Biomed. Eng. 4, 433–448 (2001)

    Article  Google Scholar 

  28. Ruimerman R., Hilbers P., van Rietbergen B., Huiskes R.: A theoretical framework for strain-related trabecular bone maintenance and adaptation. J. Biomech. 38, 931–941 (2005)

    Article  Google Scholar 

  29. Ruimerman, R.: Modeling and remodeling in bone tissue. Technische Universiteit Eindhoven, Eindhoven. http://alexandria.tue.nl/extra2/200510655.pdf (2005)

  30. Weinans H., Huiskes R., Grootenboer H.J.: The behavior of adaptive bone-remodeling simulation models. J. Biomech. 25, 1425–1441 (1992)

    Article  Google Scholar 

  31. Li J., Li H., Shi L., Fok A.S.L., Ucer C., Devlin H., Horner K., Silikas N.: A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent. Mater. 23, 1073–1078 (2007)

    Article  Google Scholar 

  32. Alon U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, New York (2007)

    Google Scholar 

  33. Pivonka P., Zimak J., Smith D.W., Gardiner B.S., Dunstan C.R., Sims N.A., John Martin T., Mundy G.R.: Model structure and control of bone remodeling: a theoretical study. Bone 43, 249–263 (2008)

    Article  Google Scholar 

  34. Robling A.G., Hinant F.M., Burr D.B., Turner C.H.: Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J. Bone Miner. Res. 17, 1545–1554 (2002)

    Article  Google Scholar 

  35. Rubin C., Turner A.S., Bain S., Mallinckrodt C., McLeod K.: Anabolism. Low mechanical signals strengthen long bones. Nature 412, 603–604 (2001)

    Article  Google Scholar 

  36. Bergmann, G., Graichen, F., Rohlmann, A.: Hip joint force measurements.http://www.medizin.fu-berlin.de/biomechanik/homefrme.htm (2003)

  37. Parfitt A.M.: Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J. Cell. Biochem. 55, 273–286 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Qin, QH. Parametric study of control mechanism of cortical bone remodeling under mechanical stimulus. Acta Mech Sin 26, 37–44 (2010). https://doi.org/10.1007/s10409-009-0313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0313-z

Keywords

Navigation