Skip to main content
Log in

Numerical simulation of tumor-induced angiogenesis influenced by the extra-cellular matrix mechanical environment

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

To investigate tumor-induced angiogenesis under the influence of the mechanical environments inside and outside the tumor, mathematical model of tumor angiogenesis was developed. In the model, extra-cellular matrix (ECM) was treated as a thin plane. The displacement of ECM is obtained from the force balance equation consisted of the ECs traction, the ECM visco-elastic forces and the external forces. Simulation results show that a layered capillary network is obtained with a well vascularized region at the periphery of the tumor. The present model can be used as a valid theoretical method in the basic researches in tumor-induced angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Folkman J.: Therapeutic implication. N. Engl. J. Med. 285, 1182–1186 (1971)

    Google Scholar 

  2. Helmlinger G., Netti P.A., Lichtenbeld H.D. et al.: Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15, 778–783 (1997)

    Article  Google Scholar 

  3. Araujo R.P., McElwain D.L.S.: The role of mechanical host-tumor interactions in the collapse of tumor blood vessels and tumor growth dynamics. J. Theor. Biol. 238, 817–827 (2006)

    Article  MathSciNet  Google Scholar 

  4. Nikos V.M., Steve W., Hans G.O.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49, 111–187 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Anderson A.R.A., Chaplain M.A.J.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–900 (1998)

    Article  MATH  Google Scholar 

  6. McDougall S.R., Anderson A.R.A., Chaplain M.A.J.: Mathematical modelling of flow through vascular networks Implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702 (2002)

    Article  Google Scholar 

  7. Holmes M.J., Sleeman B.D.: A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. J. Theor. Biol. 202, 95–112 (2000)

    Article  Google Scholar 

  8. Gao H., Xu S.H., Cai Y. et al.: Numerical simulation of tumor-induced angiogenesis incorporating mechanical effect. J. Med. Biomech. 21, 2–7 (2006) (in Chinese)

    Google Scholar 

  9. Baxter L.T., Jain R.K.: Transport of fluid and macromolecules in tumors I. Role of interstitial pressure and convection. Microvasc. Res. 37, 77–104 (1989)

    Article  Google Scholar 

  10. Murray J.D., Oster G.F.: Cell traction models for generation of pattern and form in morphogenesis. J. Math. Biol. 19, 265–279 (1984)

    MATH  MathSciNet  Google Scholar 

  11. Murray J.D.: Mathematical Biology. Springer, New York (2003)

    MATH  Google Scholar 

  12. Jain R.K.: Transport of molecules, particles, and cells in solid tumors. Annu. Rev. Biomed. Eng. 10, 241–263 (1999)

    Article  Google Scholar 

  13. Landau L.D., Lifshitz M.: Theory of Elasticity. Pergamon, London (1959)

    Google Scholar 

  14. Chaplain M.A.J., Stuart A.M.: A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factors. IMA J. Math. Appl. Med. Biol. 10, 149–168 (1993)

    Article  MATH  Google Scholar 

  15. Chaplain M.A.J., Anderson A.R.A.: Mathematical modeling, simulation and prediction of tumour induced angiogenesis. Invasion and Metastasis 16, 222–234 (1996)

    Google Scholar 

  16. Orme M.E., Chaplain M.A.J.: Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J. Math. Appl. Med. Biol. 14, 189–205 (1997)

    Article  MATH  Google Scholar 

  17. Duda D.G., Sunamura M., Lozonschi L. et al.: Overexpression of the p53-inducible brain-specific angiogenesis inhibitor 1 suppresses efficiently tumour angiogenesis. Br. J. Cancer 86, 490–496 (2002)

    Article  Google Scholar 

  18. Weidner N.: Intratumor microvessel density as a prognostic factor in cancer. Am. J. Pathol. 147, 9–19 (1995)

    Google Scholar 

  19. Manoussaki D., Lubkin S.R., Vernon R.B. et al.: A mechanical model for the formation of vascular networks in vitro. Acta Biotheoret. 44, 271–282 (1996)

    Article  Google Scholar 

  20. Risau W.: Mechanisms of angiogenesis. Nature 386, 671–674 (1997)

    Article  Google Scholar 

  21. Zhao G.P., Wu J., Xu SX. et al.: Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor-induced angiogenesis. Acta Mech. Sin. 23, 477–483 (2007)

    Article  Google Scholar 

  22. Wu J., Xu S.X., Long Q. et al.: Coupled modeling of blood perfusion intravascular, interstitial spaces in tumor microvasculature. J. Biomech. 41, 996–1004 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixiong Xu.

Additional information

The project was supported by the National Natural Science Foundation of China (10372026 and 10772751), Shanghai Leading Academic Discipline Project (B112).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Y., Gulnar, K., Zhang, H. et al. Numerical simulation of tumor-induced angiogenesis influenced by the extra-cellular matrix mechanical environment. Acta Mech Sin 25, 889–895 (2009). https://doi.org/10.1007/s10409-009-0301-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0301-3

Keywords

Navigation