Skip to main content
Log in

A method to determine Young’s modulus of soft gels for cell adhesion

  • Technical Note
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A convenient technique is reported in this note for measuring elastic modulus of extremely soft material for cellular adhesion. Specimens of bending cylinder under gravity are used to avoid contact problem between testing device and sample, and a beam model is presented for evaluating the curvatures of gel beams with large elastic deformation. A self-adaptive algorithm is also proposed to search for the best estimation of gels’ elastic moduli by comparing the experimental bending curvatures with those computed from the beam model with preestimated moduli. Application to the measurement of the property of polyacrylamide gels indicates that the material compliance varies with the concentrations of bis-acrylamide, and the gels become softer after being immersed in a culture medium for a period of time, no matter to what extent they are polymerized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galbraith C.G., Sheetz M.P.: Forces on adhesive contacts affect cell function. Curr. Opin. Cell Biol. 10, 566–571 (1998)

    Article  Google Scholar 

  2. Vogel V., Sheetz M.P.: Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006)

    Article  Google Scholar 

  3. Yeung T., Georges P.C., Flanagan L.A., Marg B., Ortiz M., Funaki M., Zahir N., Ming W.Y., Weaver V., Janmey P.A.: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60, 24–34 (2005)

    Article  Google Scholar 

  4. Pelham R.J., Wang Y.L.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA. 94, 13661–13665 (1997)

    Article  Google Scholar 

  5. Qin L., Huang J.Y., Xiong C.Y., Zhang Y.Y., Fang J.: Dynamical stress characterization and energy evaluation of single cardiac myocyte actuating on flexible substrate. Biochem. Biophys. Res. Commun. 360, 352–356 (2007)

    Article  Google Scholar 

  6. Dembo M., Wang Y.L.: Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999)

    Article  Google Scholar 

  7. Munevar S., Wang Y.L., Dembo M.: Traction force microscopy of migrating normal and H-Ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757 (2001)

    Article  Google Scholar 

  8. Wang N., Tolic-Norrelykke I.M., Chen J.X., Mijailovich S.M., Butler J.P., Fredberg J.J., Stamenovic D.: Cell prestress. I. stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, C606–616 (2002)

    Google Scholar 

  9. Lee J., Leonard M., Oliver T., Ishihara A., Jacobson K.: Traction force generated by locomoting keratocytes. J. Cell Biol. 127, 1957–1964 (1994)

    Article  Google Scholar 

  10. Huang J.Y., Peng X.L., Qin L., Zhu T., Xiong C.Y., Zhang Y.Y., Fang J.: Determination of cellular tractions on elastic substrate based on an integral Boussinesq solution. J. Biomech. Eng.-Trans. ASME. 131, 061009 (2009). doi:10.1115/1.3118767

    Article  Google Scholar 

  11. Li Y., Wen C., Xie H., Ye A., Yin Y.: Mechanical property analysis of stored red blood cell using optical tweezers. Colloids Surf. B. 70, 169–173 (2009)

    Article  Google Scholar 

  12. Dimitriadis E.K., Horkay F., Maresca J., Kachar B., Chadwick R.S.: Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002)

    Article  Google Scholar 

  13. Zhang M., Zheng Y.P., Mak A.F.T.: Estimating the effective Young’s modulus of tissue from indentation tests—nonlinear finite element analysis of effects of friction and large deformation. Med. Eng. Phys. 19, 512–517 (1997)

    Article  Google Scholar 

  14. Chen S., Liu L., Wang T.: Nanoindentation of thin-film-substrate system: determination of film hardness and Young’s modulus. Acta Mech. Sin. 20(4), 383–392 (2004)

    Article  MATH  Google Scholar 

  15. Wu K.C., You H.: Determination of solid material elastic modulus and surface energy based on JKR contact model. Appl. Surf. Sci. 253, 8530–8537 (2007)

    Article  Google Scholar 

  16. Timoshenko S., Gere J.M.: Mechanics of Materials. Van Nostrand Reinhold, New York (1972)

    Google Scholar 

  17. Boudou T., Ohayon J., Arntz Y., Finet G., Picart C., Tracqui P.: An extended modeling of the micropipette aspiration experiment for the characterization of the Young’s modulus and Poisson’s ratio of adherent thin biological samples: Numerical and experimental studies. J. Biomech. 39, 1677–1685 (2006)

    Article  Google Scholar 

  18. Tracqui P., Ohayon J., Boudou T.: Theoretical analysis of the adaptive contractile behaviour of a single cardiomyocyte cultured on elastic substrates with varying stiffness. J. Theor. Biol. 255, 92–105 (2008)

    Article  Google Scholar 

  19. Xiang Y., LaVan D.A.: Analysis of soft cantilevers as force transducers. Appl. Phys. Lett. 90, 133901 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyang Xiong.

Additional information

The project supported by the National Basic Research Program (2007CB935602), the National Natural Science Foundation of China (90607004, 10672005).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Huang, J., Qin, L. et al. A method to determine Young’s modulus of soft gels for cell adhesion. Acta Mech Sin 25, 565–570 (2009). https://doi.org/10.1007/s10409-009-0270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0270-6

Keywords

Navigation