Skip to main content
Log in

A novel twice-interpolation finite element method for solid mechanics problems

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed through two stages of consecutive interpolation. The primary interpolation follows exactly the same procedure of standard FEM and is further reproduced according to both nodal values and averaged nodal gradients obtained from primary interpolation. The trial functions thus constructed have continuous nodal gradients and contain higher order polynomial without increasing total freedoms. Several benchmark examples and a real dam problem are used to examine the TFEM in terms of accuracy and convergence. Compared with standard FEM, TFEM can achieve significantly better accuracy and higher convergence rate, and the continuous nodal stress can be obtained without any smoothing operation. It is also found that TFEM is insensitive to the quality of the elemental mesh. In addition, the present TFEM can treat the incompressible material without any modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zienkiewicz O.C., Taylor R.L.: The Finite Element Method. 5th edn. Butterworth Heinemann, Oxford (2000)

    MATH  Google Scholar 

  2. Reddy J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford Univeristy Press, Oxford (2004)

    Book  MATH  Google Scholar 

  3. Dohrmann C.R., Heinstein M.W., Jung J., Key S.W., Witkowski W.R.: Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. Int. J. Numer. Meth. Eng. 47, 1549–1568 (2000)

    Article  MATH  Google Scholar 

  4. Smith I.M., Griffiths D.V.: Programming the Finite Element Method, 4th edn. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  5. Lee N.S., Bathe K.J.: Effects of element distortions on the performance of isoparametric elements. Int. J. Numer. Meth. Eng. 36, 3553–3576 (1993)

    Article  MATH  Google Scholar 

  6. Hughes T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  7. Hughes T.J.R.: Equivalence of finite elements for nearly incompressible elasticity. J. Appl. Mech. 44, 181–183 (1977)

    Google Scholar 

  8. Bonet J., Burton A.J.: A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Comm. Numer. Meth. Eng. 14, 437–449 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lucy L.B.: A numerical approach to testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  10. Belytschko T., Lu Y.Y., Gu L.: Element-free Galerkin method. Int. J. Numer. Meth. Eng. 37, 229–256 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu W.K., Jun S., Zhang Y.F.: Reproducing kernel particle methods. Int. J. Numer. Meth. Eng. 20, 1081–1106 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Atluri S.N., Zhu T.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zheng, C., Wu, S.C., Tang, X.H., Zhang, J.H.: A novel mesh-free poly-cell Galerkin (MPG) method. Acta Mech. Sin. doi:10.1007/s10409-009-0239-5

  14. Zheng C., Wu S.C., Tang X.H., Zhang J.H.: A meshfree poly-cell Galerkin (MPG) approach for elasticity and fracture problems. Comp. Modell. Eng. Sci. 38, 149–178 (2008)

    Google Scholar 

  15. Dolbow J., Belytschko T.: Volumetric locking in the element free Galerkin method. Int. J. Numer. Methods Eng. 46, 925–942 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Puso M.A., Chen J.S., Zywicz E., Elmer W.: Meshfree and finite element nodal integration methods. Int. J. Numer. Meth. Eng. 74, 416–446 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu G.R., Zhang G.Y.: Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). Int. J. Numer. Meth. Eng. 74, 1128–1161 (2008)

    Article  MATH  Google Scholar 

  18. Timoshenko S.P., Goodier J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  19. Roark R.J., Young W.C.: Formulas for Stress and Strain. McGraw-Hill, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Wu.

Additional information

The project supported by the National Natural Science Foundation of China (50474053, 50475134 and 50675081) and the 863 project (2007AA042142).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, C., Wu, S.C., Tang, X.H. et al. A novel twice-interpolation finite element method for solid mechanics problems. Acta Mech Sin 26, 265–278 (2010). https://doi.org/10.1007/s10409-009-0265-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0265-3

Keywords

Navigation