Skip to main content
Log in

Finite volume element method for analysis of unsteady reaction–diffusion problems

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A finite volume element method is developed for analyzing unsteady scalar reaction–diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction–diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction–diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel T., Lube G.: Anisotropic mesh refinement for a singularly perturbed reaction–diffusion model problem. Appl. Numer. Math. 26, 415–433 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Li J., Navon I.M.: Uniformly convergent finite element meth-ods for singularly perturbed elliptic boundary value problems. I. Reaction–diffusion type. Comput. Math. Appl. 35, 57–70 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Castaings W., Navon I.M.: Mesh refinement strategies for solving singularly perturbed reaction–diffusion problems. Comput. Math. Appl. 41, 157–176 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lin B.T., Madden N.: A finite element analysis of a coupled system of singularly perturbed reaction–diffusion equations. Appl. Math. Comput. 148, 869–880 (2004)

    Article  MathSciNet  Google Scholar 

  5. El-Salam M.R.A., Shehata M.H.: The numerical solution for reaction–diffusion combustion with fuel consumption. Appl. Math. Comput. 160, 423–435 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Xu R.: A reaction–diffusion predator–prey model with stage structure and nonlocal delay. Appl. Math. Comput. 175, 984–1006 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Heineken W., Warnecke G.: Partitioning methods for reaction–diffusion problems. Appl. Numer. Math. 56, 981–1000 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Parvazinia M., Nassehi V.: Multiscale finite element modeling of diffusion–reaction equation using bubble functions with bilinear and triangular elements. Comput. Methods Appl. Mech. Eng. 196, 1095–1107 (2007)

    Article  MATH  Google Scholar 

  9. Moore P.K.: Solving regularly and singularly perturbed reaction–diffusion equations in three space dimensions. J. Comput. Phys. 224, 601–615 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Roos H.G., Stynes M., Tobiska L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer-Verlag, Berlin (1996)

    MATH  Google Scholar 

  11. Xenophontos C.: Optimal mesh design for the finite element approximation of reaction–diffusion problems. Int. J. Numer. Meth. Eng. 53, 929–943 (2002)

    Article  MathSciNet  Google Scholar 

  12. Franca L.P., Ramalho J.V.A., Valentin F.: Enriched finite element methods for unsteady reaction–diffusion problems. Commun. Numer. Meth. Eng. 22, 619–625 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Franca L.P., Valentin F.: On an improved unusual stabilized finite element method for the advective–reactive–diffusive equation. Comput. Methods Appl. Mech. Eng. 190, 1785–1800 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Franca L.P., Madureira A.L., Valentin F.: Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions. Comput. Methods Appl. Mech. Eng. 194, 3006–3021 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schwab C., Suri M., Xenophontos C.: The hp finite element method for problems in mechanics with boundary layers. Comput. Methods Appl. Mech. Eng. 157, 311–333 (1996)

    Article  MathSciNet  Google Scholar 

  16. Schwab C., Melenk J.M.: hp FEM for reaction–diffusion equations. I. Robust exponential convergence. SIAM J. Numer. Anal. 35, 1520–1557 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liao W., Zhu J., Khaliq A.Q.M.: An effficient high-order algorithm for solving systems of reaction–diffusion equations. Numer. Methods Partial Differ. Equ. 18, 340–354 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rui H.: Symmetric mixed covolume methods for parabolic problems. Numer. Methods Partial Differ. Equ. 18, 561–583 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ma X., Shu S., Zhou A.: Symmetric finite volume discretizations for parabolic problems. Comput. Methods Appl. Mech. Eng. 192, 4467–4485 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang T.: Alternating direction finite volume element methods for 2D parabolic partial differential equations. Numer. Methods Partial Differ. Equ. 24, 24–40 (2008)

    Article  MATH  Google Scholar 

  21. Wang H., Liu J.: Development of CFL-free, explicit schemes for multidimensional advection–reaction equations. SIAM J. Sci. Comput. 23, 1418–1438 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shu C.W., Osher S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zienkiewicz O.C., Taylor R.L.: The Finite Element Method for Solid and Structural Mechanics 6th edn. Butterworth-Heinemann, Burlington (2005)

    MATH  Google Scholar 

  24. Richtmyer R.D., Morton K.W.: Difference Methods for Initial-value Problems. Wiley-Interscience, New York (1967)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramote Dechaumphai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phongthanapanich, S., Dechaumphai, P. Finite volume element method for analysis of unsteady reaction–diffusion problems. Acta Mech Sin 25, 481–489 (2009). https://doi.org/10.1007/s10409-009-0237-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0237-7

Keywords

Navigation