Skip to main content
Log in

Applications of URANS on predicting unsteady turbulent separated flows

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Accurate prediction of unsteady separated turbulent flows remains one of the toughest tasks and a practical challenge for turbulence modeling. In this paper, a 2D flow past a circular cylinder at Reynolds number 3,900 is numerically investigated by using the technique of unsteady RANS (URANS). Some typical linear and nonlinear eddy viscosity turbulence models (LEVM and NLEVM) and a quadratic explicit algebraic stress model (EASM) are evaluated. Numerical results have shown that a high-performance cubic NLEVM, such as CLS, are superior to the others in simulating turbulent separated flows with unsteady vortex shedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakayama A., Miyashita K.: URANS simulation of flow over smooth topography. Int. J. Numer. Methods Heat Fluid 11(8), 723–745 (2001)

    Article  MATH  Google Scholar 

  2. Mannini, C., Soda, A., Voß, R., Schewe, G.: URANS and DES simulation of flow around a rectangular cylinder. In: New Results in Numerical and Experimental Fluid Mechanics VI. Springer, Berlin (2008)

  3. Ferrand, P., Boudet, J., Caro, J.: Analyses of URANS and LES capabilities to predict vortex shedding for rods and turbines. In: 10th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Duke University, editor: Hall KC, Durham (NC, USA), Sept. (2003)

  4. Zdravkovich M.M.: Flow Around Circular Cylinders. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  5. Shih, T.H., Zhu, J., Lumley, J.L.: A realizable Reynolds stress algebraic equation model. NASA TM 105993 (1993)

  6. Craft T.J., Launder B.E., Suga K.: Development and application of a cubic eddy-viscosity model of turbulence. Int. J. Heat Fluid Flow 17(2), 108–115 (1996)

    Article  Google Scholar 

  7. Gatski T., Speziale C.: On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 59–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ma X., Karamanos G.S., Karniadakis G.E.: Dynamics and low-dimensionality of a turbulence near wake. J. Fluid Mech. 410, 29–65 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Blackburn, H.M., Schmidt, S.: Large eddy simulation of flow past a circular cylinder. In: 14th Australasian Fluid Mechanics Conference (2001)

  10. Marongiu, C., Catalano, P.: Amato M.U-ZEN: A computational tool solving U-RANS equations for industrial unsteady applications. AIAA 2004–2345

  11. Germano M., Piomelli U., Moin P., Cabot W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  12. Beaudan, P., Moin, P.: Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number. Tech. Rep. TF-62, Stanford University, CA 94305 (1994)

  13. Lourenco, L.M., Shih, C.: Characteristics of the plane turbulent near wake of a circular cylinder. A particle image velocimetry study (private communication)

  14. Ong L., Wallace J.: The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids 20(6), 441–453 (1996)

    Article  Google Scholar 

  15. Kravchenko A.G., Moin P.: Numerical studies of flow around a circular cylinder at Re D =  3900. Phys. Fluids 12(2), 403–417 (2000)

    Article  MATH  Google Scholar 

  16. Noca, F., Park, H., Garib, M.: Vortex formation lengths of a circular cylinder (300 < Re < 4000) using PIV. In: Conference on Bluff Body Wakes and Vortex Induced Vibrations Presented at ASME Fluids Engineering Division (Annual Summer Meeting), Washington DC, 1998, Paper 46 (FEDSM98-5202)

  17. Huang Y.N., Ma H.Y., Xu J.L.: On applying the extended intrinsic mean spin tensor to modelling turbulence in non-inertial frames of reference. Sci. China, G 51(11), 1691–1706 (2008)

    Article  Google Scholar 

  18. Tremblay, F., Manhart, M., Friedrich, R.: DNS of flow around a circular cylinder at a subcritical Reynolds number with Cartesian grids. In: Proceedings of the 8th European Turbulence Conference 2000. Barcelona, Spain, June 27–30 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyang Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Ma, H. Applications of URANS on predicting unsteady turbulent separated flows. Acta Mech Sin 25, 319–324 (2009). https://doi.org/10.1007/s10409-008-0217-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0217-3

Keywords

Navigation