Skip to main content
Log in

An eigenelement method and two homogenization conditions

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Under inspiration from the structure-preserving property of symplectic difference schemes for Hamiltonian systems, two homogenization conditions for a representative unit cell of the periodical composites are proposed, one condition is the equivalence of strain energy, and the other is the deformation similarity. Based on these two homogenization conditions, an eigenelement method is presented, which is characteristic of structure-preserving property. It follows from the frequency comparisons that the eigenelement method is more accurate than the stiffness average method and the compliance average method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalidinli S.R., Franco E. (1997) Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites. Composites Sci. Technol. 57: 293–305

    Article  Google Scholar 

  2. Babuska I. (1976) Solution of interface problems by homogenization. Parts I, II. SIAM J. Math. Anal. 7: 603–645

    Article  MATH  MathSciNet  Google Scholar 

  3. Oleinik O.A., Shamaev A.V., Yosifian G.A. (1992) Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam

    Google Scholar 

  4. Chung P.W., Tamma K.K., Namburu R.R. (2001) Asymptotic expansion homogenization for heterogeneous media: computational issues and applications. Composites 32(9): 1291–1301

    Article  Google Scholar 

  5. Cao L.Q., Cui J.Z. (2004) Asymptotic expansion and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for the second order elliptic equations in perforated domains. Numer. Math. 96: 525–581

    Article  MATH  MathSciNet  Google Scholar 

  6. Kalamkarov A.L., Georgiades A.V. (2004) Asymptotic homogenization models for smart composite plates with rapidly varying thickness: Part I—theory. Int. J. Multiscale Comput. Eng. 2(1): 133–148

    Article  Google Scholar 

  7. Georgiades A.V., Kalamkarov A.L. (2004) Asymptotic homogenization models for smart composite plates with rapidly varying thickness: Part II—applications. Int. J. Multiscale Comput. Eng. 2(1): 149–172

    Article  Google Scholar 

  8. Fish J., Chen W., Nagai G. (2000) Nonlocal dispersive model for wave propagation in heterogeneous media: multidimensional case. Int. J. Multiscale Comput. Eng. 54: 347–363

    MathSciNet  Google Scholar 

  9. Fish J., Chen W. (2004) Space-time multiscale model for wave propagation in heterogeneous media. Comp. Methods Appl. Mech. Eng. 93: 4837–4856

    Article  MathSciNet  Google Scholar 

  10. Chen W., Fish J. (2006) A generalized space-time mathematical homogenization theory for bridging atomistic and continuum scales. Int. J. Numer. Methods Eng. 67: 253–271

    Article  MATH  MathSciNet  Google Scholar 

  11. Fish J., Chen W., Li R. (2007) Generalized mathematical homogenization of atomistic media at finite temperatures in three dimensions. Comput. Methods Appl. Mech. Eng. 196: 908–922

    Article  MATH  MathSciNet  Google Scholar 

  12. Hassani B., Hinton E. (1998) A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comp. Struct. 69: 707–717

    Article  MATH  Google Scholar 

  13. Wang W.X., Luo D.M., Takao Y., Kakimoto K. (2006) New solution method for homogenization analysis and its application to the prediction of macroscopic elastic constants of materials with periodic microstructures. Comp. Struct. 84: 991–1001

    Article  MathSciNet  Google Scholar 

  14. Hou T.Y., Wu X.H. (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134: 169–189

    Article  MATH  MathSciNet  Google Scholar 

  15. Weinan E., Engquist B. (2002) The heterogeneous multi-scale methods. Commun. Math. Sci. 1: 87–132

    Google Scholar 

  16. Xing Y.F., Tian J.M. (2006) The homogenization method based on eigenvector expansions for woven fabric composites. Int. J. Multiscale Comput. Eng. 4(1): 197–206

    Article  Google Scholar 

  17. Xing Y.F., Tian J.M. (2007) Unit cell eigenelement of 3-D orthogonal woven composites and its applications (in Chinese). Acta Aeronautica Astron. Sin. 28(4): 881–885

    Google Scholar 

  18. Xing Y.F., Yang Y. (2008) A bending moment beam eigenelement with piecewise shape functions (in Chinese). Chin. J. Theor. Appl. Mech. 40(2): 222–228

    MathSciNet  Google Scholar 

  19. Feng K. (1986) Difference schemes for Hamiltonian formalism and symplectic geometry. JCM 4(3): 279–289

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Y., Wang, X. An eigenelement method and two homogenization conditions. Acta Mech Sin 25, 345–351 (2009). https://doi.org/10.1007/s10409-008-0215-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0215-5

Keywords

Navigation