Skip to main content
Log in

Numerical analysis of ossicular chain lesion of human ear

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus, and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Iurato S., Quaranta A. (1999) Malleus-handle fracture: historical review and three new cases. Am. J. Otol. 20: 19–25

    Google Scholar 

  2. Park K., Choung Y.-H., Shin Y.R. (2007) Conductive deafness with normal eardrum absence of the long process of the incus. Acta Otolaryngol. 127: 816–820

    Article  Google Scholar 

  3. Gomes G., Felix F., Tomita S. (2005) Improvements of bone conduction after stapes surgery. Otolaryngol. Head Neck Surg. 133: 240

    Article  Google Scholar 

  4. Funnell W.R.J., Laszlo C.A. (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust. Soc. Am. 63: 1461–1467

    Article  Google Scholar 

  5. Wada H., Metoki T. (1992) Analysis of dynamic behavior of human middle ear using a finite method. J. Acoust. Soc. Am. 92: 3157– 3168

    Article  Google Scholar 

  6. Sun Q., Gan R.Z., Chang K.-H., Dormer K.J. (2002) Computer-integrated finite element modeling of human middle ear. Biomech. Model. Mechanobiol. 1: 109–122

    Article  Google Scholar 

  7. Gan R.Z., Feng B., Sun Q. (2004) Three-dimensional finite element modeling of human ear for sound transmission. Ann. Biomed. Eng. 32: 847–859

    Article  Google Scholar 

  8. Lee C.F., Chen J.H., Chou Y.F. (2007) Optimal graft thickness for different sizes of tympanic membrane perforation in cartilage myringoplasty a finite element analysis. Laryngoscope 117: 725–730

    Article  Google Scholar 

  9. Liu Y.X., Li S., Sun X.Z. (2008) Numerical modeling of human ear for sound transmission. Chin. J. Theor. Appl. Mech. 40: 107–113 (in Chinese)

    Google Scholar 

  10. Voss S.E., Rosowski J.J., Merchant S.N., Peake W.T. (2000) Acoustic respones of the human middle ear. Hear. Res. 150: 43–69

    Article  Google Scholar 

  11. Williams K.R., Lesser T.H. (1990) A finite element analysis of the natural frequencies of vibration of the human tympanic membrane. Part I. Br. J. Audiol. 24: 319–327

    Article  Google Scholar 

  12. Beer, H.J., Bornitz, M., Drescher, J.: Finite element modeling of the human eardrum and applications. In: Huttenbrink, K.B. (ed.) Middle Ear Mechanics in Research and Otosurgery, pp. 40–47. Dresden University of Technology, Dresden (1996)

  13. Kirikae I. (1960) The Structure and Function of the Middle Ear. University of Tokyo Press, Tokyo

    Google Scholar 

  14. Speirs A.D., Hotz M.A., Oxland T.R. (1999) Biomechanical properties of sterilized human auditory ossicles. J. Biomech. 32: 485– 491

    Article  Google Scholar 

  15. Herrmann, G., Liebowitz, H.: Mechanics of bone fractures. In: Liebowitz, H. (ed.) Fracture: an Advanced Treatise, pp. 772–840. Academic Press, New York (1972)

  16. Wada, H., Koike, T., Kobayashi, T.: Three-dimensional finite-element method (FEM) analysis of the human middle ear. In: Huttenbrink, K.B. (ed.) Middle Ear Mechanics in Research and Otosurgery. pp. 76–80. Dresden University of Technology, Dresden (1996)

  17. Koike T., Wada H., Kobayashi T. (2002) Modeling of the human middle ear using the finite-element method. J. Acoust. Soc. Am. 111: 1306–1317

    Article  Google Scholar 

  18. Gan R.Z., Sun Q., Feng B., Wood M.W. (2006) Acoustic–structural coupled finite element analysis for sound transmission in human ear-pressure distributions. Med. Eng. Phys. 28: 395–404

    Article  Google Scholar 

  19. Mehta R.P., Rosowski J.J., Voss S.E. (2006) Determinants of hearing loss in perforations of the tympanic membrane. Otol. Neurotol. 27: 136–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Li.

Additional information

The project was supported by the National Natural Science Foundation of China (10472025, 10672036, and 10872043).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, S. & Sun, X. Numerical analysis of ossicular chain lesion of human ear. Acta Mech Sin 25, 241–247 (2009). https://doi.org/10.1007/s10409-008-0206-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0206-6

Keywords

Navigation