Skip to main content
Log in

Recent progress on the study of asymmetric vortex flow over slender bodies

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The investigations of forebody vortex flow and its flow control have great importance in both academic field and engineering application areas. A large number of papers and many review papers have been published. However in this research field of forebody asymmetric vortices, three problems such as tip perturbation effect, Reynolds number effect and flow instability are less studied and thus not understood completely. So many researches are still working on the issues in recent years. The present paper attempts to provide a review of recent research progress on first two problems. The first problem is mainly concerned with how the vortex flow evolves after tip perturbation; how to solve the problem of repeatability and reproducibility of wind tunnel testing data; how to develop a conception of active flow control technique with tip perturbation based on the study of vortex flow response to tip perturbation. For the second problem one is mainly concerned that how the asymmetric vortices are developed with the increase of Reynolds number; how to classify the vortex flow patterns in different Reynolds number regimes; how to develop an appropriate boundary layer transition technique to simulate flows at high Reynolds number in the convention wind tunnels. Finally, some important questions that deserve answers are proposed in the concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erickson G.E.: High angle-of-attack aerodynamics. Annu. Rev. Fluid Mech. 27, 45–88 (1995)

    Article  Google Scholar 

  2. Bridges D.H.: The asymmetric vortex wake problem—asking the right question. The 36th AIAA Fluid Dynamics Conference 5(8), 1737–1765 (2006)

    Google Scholar 

  3. Munro C.D., Krus P., Jouannet C.: Implications of scale effect for the prediction of high angle of attack aerodynamics. Prog. Aerosp. Sci. 41, 301–322 (2005)

    Article  Google Scholar 

  4. Beyers, M.E., Ericsson, L.: Why is LEX vortex breakdown on the F/A-18 configuration insensitive to Reynolds number? AIAA paper 2001-0690 (2001)

  5. Cummings R.M., Forsythe J.R., Morton S.A., Squires K.D.: Computational challenges in high angle of attack flow prediction. Prog. Aerosp. Sci. 39, 369–384 (2003)

    Article  Google Scholar 

  6. Rom S.: High Angle of Attack Aerodynamics. Springer, New York (1992)

    Google Scholar 

  7. Smith J.H.B.: Vortex flows in aerodynamics. Annu. Rev. Fluid Mech. 18, 221–242 (1986)

    Article  Google Scholar 

  8. Chambers, J.R.: High-angle-of-attack aerodynamics: lessons learned. AIAA paper 86-1774 (1986)

  9. Viswanathan, A., Klismith, K., Forsythe, J.R., Squires, K.D.: Detached-eddy simulation around a rotating forebody. AIAA paper 2003-0263 (2003)

  10. Ericsson L.E.: Challenges in high-alpha vehicle dynamics. Prog. Aerosp. Sci. 31, 291–334 (1995)

    Article  Google Scholar 

  11. Yang G.W., Lu X.Y, Zhuang L.X.: Vortex control by the spanwise suction flow on the upper surface of delta wing. Acta Mech. Sin. 15(2), 116–125 (1999)

    Article  Google Scholar 

  12. Zhuang F.G.: On numerical techniques in CFD. Acta Mech. Sin. 16(3), 193–216 (2000)

    Article  Google Scholar 

  13. Sun M., Wu J.H.: Large aerodynamic force on a sweeping wing at low Reynolds number. Acta Mech. Sin. 20(1), 24–31 (2004)

    Google Scholar 

  14. Forsythe, J.R., Squires, K.D., Wurtzler, K.E., Spalart, P.R.: Detached-eddy simulation of fighter aircraft at high alpha. AIAA paper 2002-0591 (2002)

  15. Allen, H.J. Perkins, E.W.: Characteristics of flow over inclined bodies of revolution. NACA RM A50L07 (1951)

  16. Jorgensen, L.H.: Prediction of aerodynamic characteristics for slender alone and with lifting surfaces to high angles of attack. AGARD CP-247, paper-28 (1978)

  17. Chapman, G.T., Keener, E.R.: The aerodynamics of bodies of revolution at angles of attack to 90°. AIAA paper 79-0023 (1979)

  18. Hunt, B.L.: Asymmetric vortex forces and wakes on slender bodies. AIAA paper 82-1336 (1982)

  19. Ericsson, L.E., Reding, J.P.: Vortex-induced asymmetric loads in 2-d and 3-d flows. AIAA paper 80-0181 (1980)

  20. Ericsson, L.E., Reding, J.P.: Aerodynamics effects of asymmetric vortex shedding from slender bodies. AIAA paper 85-1797 (1985)

  21. Ericsson, L.E.: Control of forebody flow asymmetric—a critical review. AIAA paper 90-2833 (1990)

  22. Ericsson, L.E., Reding, J.P.: Asymmetric flow separation and vortex shedding on bodies of revolution, Progress in Astronautics and Aeronautics. AIAA, 141, chap. 10, 391–452 (1992)

  23. Malcolm, G.: Forebody vortex control—a progress review. AIAA paper 93-3540 (1993)

  24. Williams, D.: A review of forebody vortex control scenarios. AIAA paper 97-1967 (1997)

  25. Ericsson, L.E., Beyers, M.E.: Fluid mechanics considerations for successful design of forebody flow control. AIAA paper 2000-2320 (2000)

  26. Deng X.Y., Wang Y.K.: Asymmetric vortex flow over slender body and its active control at high angle of attack. Acta Mech. Sin. 20(6), 567–579 (2004)

    Article  MathSciNet  Google Scholar 

  27. Roos, F.W.: Micro blowing: an effective, efficient method of vortex–asymmetry management. AIAA paper 2000-4416 (2000)

  28. Wardlaw A.B., Morrison A.M.: Induced side forces at high angles of attack. J. Spacecraft 13(10), 589–593 (1976)

    Article  Google Scholar 

  29. Dexter, P.C.: A study of a symmetric flow over slender bodies at high angles of attack in a low turbulence environment. AIAA Paper 84-0505 (1984)

  30. Zilliac G.G., Degani D., Tobak M.: Asymmetric vortex on a slender body of revolution. AIAA J. 29(5), 667–675 (1991)

    Article  Google Scholar 

  31. Levy Y., Hesselink L., Degani D.: Systematic study of the correlation geometrical disturbances and flow asymmetries. AIAA J. 34(4), 772–777 (1996)

    Article  Google Scholar 

  32. Lamont P.J., Hunt B.L.: Pressure and force distributions on a sharp-nosed circular cylinder at large angles of inclination to a uniform subsonic stream. J. Fluid Mech. 76(3), 519–599 (1976)

    Article  Google Scholar 

  33. Dexter, P.C., Hunt, B.L.: The effects of roll angle on the flow over a slender body of revolution at high angles of attack. AIAA paper 81-0358 (1981)

  34. Hunt, B.L., Dexter, P.C.: Pressure on a slender body at high angle of attack in a very low turbulence level air stream. AGARD-CP-247, paper-17 (1978)

  35. Keener, E.R., Chapman, G.T., Cohen, L., Talaghani, J.: Side forces on a tangent–ogive forebody with a fineness ratio of 3.5 at high angles of attack and mach numbers from 0.1 to 0.7. NASA TM X-3437 (1977)

  36. Moskovitz C.A., Hall R.M., Dejarnette F.R.: New device for controlling asymmetric flowfields on forebodies at large alpha. J. Aircraft 28(7), 456–462 (1991)

    Article  Google Scholar 

  37. Moskovitz, C.A., Hall, R.M., Dejarnette, F.R.: Experimental investigation of a new device to control the asymmetric flowfield on forebodies at large angles of attack. AIAA-90-0069 (1990)

  38. Bridge, D.H.: Tip effects on the vortex wake of an axisymmetric body at angle of attack. Ph.D. Thesis, California Institute of Technology, Department of Aeronautics (1993)

  39. Bridges D.H., Hornung H.G.: Elliptic tip effects on the vortex wake of an axisymmetric body at incidence. AIAA J. 32(7), 1437–1445 (1994)

    Article  Google Scholar 

  40. Tajfar A.H., Lamont P.J.: Sideslip behavior of elliptic cross-sectional forebodies at high angle of attack. J. Aircraft 34(4), 472–478 (1997)

    Article  Google Scholar 

  41. Luo S.C., Lim T.T. et al.: Flowfield around ogive/elliptic-tip cylinder at high angle of attack. AIAA J. 36(10), 1778–1787 (1998)

    Article  Google Scholar 

  42. Chen X.R., Deng X.Y., Wang Y.K., Liu P.Q., Gu Z.F.: Influence of nose perturbations on behavior of asymmetric vortex over slender body. Acta Mech. Sin. 18(6), 581–593 (2002)

    Article  Google Scholar 

  43. Deng, X.Y., Chen, X.R., Wang, Y.K., Liu, P.Q., Gu, Z.F.: Influence of nose perturbations on behavior of asymmetric vortex over slender body. AIAA paper 2002-4710 (2002)

  44. Chen X.R.: Perturbation, effect and active control on behaviors of asymmetric vortex over slender body. Ph.D. Thesis, Beijing University of Aeronautics and Astronautics, Department of Flying Vehicle Design and Applied Mechanics, China (2003) (in Chinese)

  45. Deng X.Y., Wang G., Chen X.R, Wang Y.K., Liu P.Q., Xi Z.X.: A physical model of asymmetric vortex flow structure in regular state over slender body at high angle of attack. Sci. China Ser. E 46(6), 561–573 (2003)

    Article  MATH  Google Scholar 

  46. Deng, X.Y., Wang, Y.K, Chen, X.R.: Deterministic flow field and flow structure model of asymmetric vortex over slender body. AIAA paper 2003-5475 (2003)

  47. Bo N., Deng X.Y., Wang Y.K.: Smog visualization technique of asymmetric vortices on forebody at high wind speed. Chinese Journal of Theoretical and Applied Mechanics 39(2), 261–266 (2007) (in Chinese)

    Google Scholar 

  48. Murri D.G., Shah G.H., DiCarlo D.J.: Actuated forebody strake controls for the F-18 high-alpha research vehicle. J. Aircraft 32(3), 555–562 (1995)

    Article  Google Scholar 

  49. Eidson, C.R., Mosbarger, N.A.: Forebody pneumatic dvices at low angle of attack and transonic speed. AIAA paper-97-0042 (1997)

  50. Lee, R., Hanff, E.S., Kind, R.J.: Linear control of side forces and yawing moments using the dynamic manipulation of forebody vortex. ICAS-96-2.10.1 (1996)

  51. Bernhardt J.E., Williams D.R.: Proportional control of asymmetric forebody vortex. AIAA J. 36(11), 2087–2093 (1998)

    Article  Google Scholar 

  52. Lee A.S., Luo S.C., Lim T.T., Luak B., Gohe K.R.: Side force on an ogive cylinder: effects of control devices. AIAA J. 38(3), 385–388 (2000)

    Article  Google Scholar 

  53. Deng, X.Y.: Asymmetric forebody vortex flow and its perturbation active control. Proceedings of Aerodynamic Frontier Conference, 8–17 (2003) (in Chinese)

  54. Gu Y.S., Ming X.: Forebody vortex control using a fast-swinging micro-tip-strake at high angles of attack. Acta Aeronaut. Astronaut. Sin. 24(2), 102–106 (2003)

    Google Scholar 

  55. Deng, X.Y., Ma, B.F., Wang, Y.K.: An experimental study of forebody asymmetric vortex control with micro-bleed perturbation. The 5th Asian-Pacific Conference on Aerospace Technology and Science, CD-ROM (2006)

  56. Thomas J.L.: Reynolds number effects on supersonic asymmetrical flows over a cone. J. Aircraft 30(4), 488–495 (1993)

    Article  Google Scholar 

  57. Stahl, W.H., Asghar, A.: Dependence on Reynolds number of onset of vortex asymmetry behind circular cone. AIAA paper 0064, Jan. (1996)

  58. Bernhardt J.E., Williams D.R.: Effect of Reynolds number on vortex asymmetry about slender bodies. Phys. Fluids 5(2), 291–293 (1993)

    Article  Google Scholar 

  59. Lamont P.J.: Pressures around an inclined ogive cylinder with laminar, transitional, or turbulent separation. AIAA J. 20(11), 1492–1499 (1982)

    Article  Google Scholar 

  60. Roshko A.: Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10(3), 345–356 (1961)

    Article  MATH  Google Scholar 

  61. Keener E.R.: Oil flow separation patterns on an ogive forebody. AIAA J. 21(4), 550–556 (1983)

    Article  MathSciNet  Google Scholar 

  62. Keener, E.R.: Flow separation patterns on symmetric forebodies. NASA Technical Memorandum 86016 (1986)

  63. Hall, R.M.: Influence of Reynolds number on forebody side forces for 3.5-diameter tangent-ogive bodies. AIAA paper 87-2274 (1987)

  64. Champigny, P.: Reynolds number effect on the aerodynamic characteristics of an ogive-cylinder at high angles of attack. AIAA paper 84-2176 (1984)

  65. Lamont, P.J.: The complex asymmetric flow over a 3.5d ogive nose and cylindrical afterbody at high angles of attack. AIAA paper 82-0053, Jan. (1982)

  66. Lamont, P.J.: The effect of reynolds number on normal and side forces on ogive-cylinders at high incidence. AIAA paper 85-1799 (1985)

  67. Hall, R.M., Banks, D.W.: Progress in developing gritting techniques for high angle of attack flows. AIAA paper 94-0169 (1994)

  68. Reding J.P., Ericsson L.E.: Maximum vortex-induced side force. Journal of Spacecraft and Rockets 15(4), 201–207 (1978)

    Article  Google Scholar 

  69. Reding J.P., Ericsson L.E.: Re-examination of the maximum normalized vortex-induced side force. J. Spacecr. Rockets 21(5), 433–440 (1984)

    Article  Google Scholar 

  70. Deng, X.Y., Ma, B.F., Chen Y., Bo, N., Wang, Y.K.: Reynolds number effects on asymmetric vortex behaviors around slender bodies. Proceedings of the 11th Colloquium on Separated Flow, Vortex and Flow Control, Hunan, China (2006) (in Chinese)

  71. Ma B.F., Deng X.Y., Chen Y.: Effects of forced asymmetric transition on vortex asymmetry around slender bodies. AIAA J. 45(11), 2671–2676 (2007)

    Article  Google Scholar 

  72. Saric W., Reed H., White E.B.: Stability and transition of three-dimensional boundary layer. Annu. Rev. Fluid Mech. 35, 413–440 (2003)

    Article  MathSciNet  Google Scholar 

  73. Poll D.I.A.: On the effects of boundary-layer transition on a cylinder afterbody at incidence in low speed flow. Aeronaut. J. 89, 315–327 (1985)

    Google Scholar 

  74. Poll D.I.A.: Some observations of the transition process on the windward face of a long yawed cylinder. J. Fluid Mech. 150, 329–356 (1985)

    Article  Google Scholar 

  75. Zeiger, M.D., Telionis, D.P.: An investigation of a slender forebody maneuvering at incidence in high Reynolds number flow. The 44th Aerospace Sciences Meeting and Exhibit AIAA-2006-0669 (2006)

  76. Hall, R.M., Erickson, G.E., Fox, C.H., Banks, D.W., Fisher, D.F.: Evaluation of gritting strategies for high angle of attack using wind tunnel and flight test data for the F/A-18. NASA TP-1998-207670 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Y. Deng.

Additional information

The project supported by the National Natural Science Foundation of China (10432020 and 10702004) and Foundation of Pre-research (9140A13020106HK0111).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, X.Y., Tian, W., Ma, B.F. et al. Recent progress on the study of asymmetric vortex flow over slender bodies. Acta Mech Sin 24, 475–487 (2008). https://doi.org/10.1007/s10409-008-0197-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0197-3

Keywords

Navigation