Skip to main content
Log in

Necking of anisotropic micro-films with strain-gradient effects

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lloyd D.J.: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39(1), 1–123 (1994)

    MathSciNet  Google Scholar 

  2. Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  3. Ma Q., Clarke D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853–863 (1995)

    Article  Google Scholar 

  4. Stölken J.S., Evans A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109–5115 (1998)

    Article  Google Scholar 

  5. Saha R., Xue Z., Huang Y., Nix W.D.: Indentation of a soft metal film on a hard substrate: strain gradient hardening effects. J. Mech. Phys. Solids 49(9), 1997–2014 (2001)

    Article  MATH  Google Scholar 

  6. Haque M.A., Saif M.T.A.: Strain gradient effect in nanoscale thin films. Acta Mater. 51(11), 3053–3061 (2003)

    Article  Google Scholar 

  7. Nix W.D., Gao H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    Article  MATH  Google Scholar 

  8. Gao H., Huang Y., Nix W.D., Hutchinson J.W.: Mechanism-based strain gradient plasticity—I theory. J. Mech. Phys. Solids 47(6), 1239–1263 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Huang Y., Gao H., Nix W.D., Hutchinson J.W.: Mechanism-based strain gradient plasticity—II analysis. J. Mech. Phys. Solids 48(1), 99–128 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hwang K., Jiang H., Huang Y., Gao H., Hu N.: A finite deformation theory of strain gradient plasticity. J. Mech. Phys. Solids 50, 81–99 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huang Y., Qu S., Hwang K.C., Li M., Gao H.: A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20(4–5), 753–782 (2004)

    Article  MATH  Google Scholar 

  12. Abu Al-Rub R.K., Voyiadjis G.Z.: A physically based gradient plasticity theory. Int. J. Plast. 22(4), 654–684 (2006)

    Article  MATH  Google Scholar 

  13. Shizawa K., Zbib H.M.: A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: fundamentals. Int. J. Plast. 15, 899–938 (1999)

    Article  MATH  Google Scholar 

  14. Polizzotto C.: Unified thermodynamic framework for nonlocal/ gradient continuum theories. Eur. J. Mech. A/Solids 22(5), 651–668 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gudmundson P.: A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52(6), 1379–1406 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Voyiadjis G.Z., Abu Al-Rub R.K.: A finite strain plastic-damage model for high velocity impacts using combined viscosity and gradient localization limiters: part II—numerical aspects and simulations. Int. J. Damage Mech. 15(4), 335–373 (2006)

    Article  Google Scholar 

  17. Engelen R.A.B., Fleck N.A., Peerlings R.H.J., Geers M.G.D.: An evaluation of higher-order plasticity theories for predicting size effects and localisation. Int. J. Solids Struct. 43(7–8), 1857–1877 (2006)

    Article  MATH  Google Scholar 

  18. Fleck N.A., Hutchinson J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  MATH  Google Scholar 

  19. Fleck N.A., Hutchinson J.W.: Strain gradient plasticity. In: Hutchinson, J.W., Wu, T.Y.(eds) Advances in Applied Mechanics, vol 33, pp. 295–361. Academic Press, New York (1997)

    Google Scholar 

  20. Gulluoglu A.N., Srolovitz D.J., LeSar R., Lomdahl P.S.: Dislocation distributions in two dimensions. Scr. Metall. 23(8), 1347–1352 (1989)

    Article  Google Scholar 

  21. Groma I., Pawley G.S.: Role of the secondary slip system in a computer simulation model of the plastic behaviour of single crystals. Mater. Sci. Eng. A Struct. Mater. 164(1), 306–311 (1993)

    Article  Google Scholar 

  22. van der Giessen E., Needleman A.: Discrete dislocation plasticity: a simple planar model. Modell. Simul. Mater. Sci. Eng. 3(5), 689–735 (1995)

    Article  Google Scholar 

  23. Yu D.Y.W., Spaepen F.: The yield strength of thin copper films on Kapton. J. Appl. Phys. 95(6), 2991–2997 (2004)

    Article  Google Scholar 

  24. Keller R.R., Phelps J.M., Read D.T.: Tensile and fracture behavior of free-standing copper films. Mater. Sci. Eng. A 214, 42–52 (1996)

    Article  Google Scholar 

  25. Huang H., Spaepen F.: Tensile testing of freestanding Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261–3269 (2000)

    Article  Google Scholar 

  26. Haque M.A., Saif M.T.A.: Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study. Proc. Natl. Acad. Sci. USA 101(17), 6335–6340 (2004)

    Article  Google Scholar 

  27. Espinosa H.D., Prorok B.C., Fischer M.: A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J. Mech. Phys. Solids 51(1), 47–67 (2003)

    Article  Google Scholar 

  28. Espinosa H.D., Prorok B.C., Peng B.: Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52(3), 667–689 (2004)

    Article  Google Scholar 

  29. Borodkina M.M., Orekhova T.S.: Mechanism of formation of a cubic texture in materials with the FCC lattice. Fizika Metall. Metall. 54(6), 1204–1207 (1982)

    Google Scholar 

  30. Lejcek P., Sima V.: Orientation relationships in the secondary recrystallization of pure nickel. Mater. Sci. Eng. 60(2), 121–124 (1983)

    Article  Google Scholar 

  31. Legarth B.N.: Strain-gradient effects in anisotropic materials. Modell. Simul. Mater. Sci. Eng. 15, S71–S81 (2007)

    Article  Google Scholar 

  32. Fredriksson P., Gudmundson P.: Size-dependent yield strength of thin films. Int. J. Plast. 21(9), 1834–1854 (2005)

    Article  MATH  Google Scholar 

  33. Niordson C.F., Redanz P.: Size-effects in plane strain sheet-necking. J. Mech. Phys. Solids 52, 2431–2454 (2004)

    Article  MATH  Google Scholar 

  34. Niordson C.F., Tvergaard V.: Instabilities in power law gradient hardening materials. Int. J. Solids Struct. 42(2), 2559–2573 (2005)

    Article  MATH  Google Scholar 

  35. Benallal A., Tvergaard V.: Nonlocal continuum effects on bifurcation in the plane strain tension–compression test. J. Mech. Phys. Solids 43(5), 741–770 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mühlhaus H.B., Aifantis E.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28(7), 845–857 (1991)

    Article  MATH  Google Scholar 

  37. Hill R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 193, 281–297 (1948)

    Article  MATH  Google Scholar 

  38. Hill R.: The Mathematical Theory of Plasticity. The Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  39. Barlat F., Lege D.J., Brem J.C.: A six-component yield function for anisotropic materials. Int. J. Plast. 7, 693–712 (1991)

    Article  Google Scholar 

  40. Lee E.H.: Elastic-plastic deformation at finite strain. Trans. ASME Ser. E J. Appl. Mech. 36, 1–6 (1969)

    MATH  Google Scholar 

  41. Legarth B.N.: Effects of geometrical anisotropy on failure in a plastically anisotropic metal. Eng. Fract. Mech. 72(18), 2792–2807 (2005)

    Article  Google Scholar 

  42. Borg U., Niordson C.F., Fleck N.A., Tvergaard V.: A viscoplastic strain gradient analysis of materials with voids or inclusions. Int. J. Solids. Struct. 43(16), 4906–4916 (2006)

    Article  MATH  Google Scholar 

  43. Li T., Suo Z.: Deformability of thin metal films on elasomer substrates. Int. J. Solids Struct. 43, 2351–2363 (2006)

    Article  MATH  Google Scholar 

  44. Kuroda M.: Interpretation of the behavior of metals under large plastic shear deformation:a macroscopic approach. Int. J. Plast. 13(4), 359–383 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  45. Legarth, B.N., Tvergaard, V., Kuroda, M.: Cracktip blunting in an anisotropic material plastic spin (2002). On-line publication of WCCM V—Fifth World Congress on Computational Mechanics, http://wccm.tuwien.ac.at/

  46. Kuroda M., Tvergaard V.: Plastic spin associated with a non-normality theory of plasticity. Eur J. Mech. A/Solids 20(6), 893–905 (2001)

    Article  MATH  Google Scholar 

  47. Dafalias Y.F.: The plastic spin. Trans. ASME J. Appl. Mech. 52(4), 865–871 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  48. de Borst R., Pamin J.: Some novel developments in finite element procedures for gradient-dependent plasticity. Int. J. Numer. Methods Eng. 39, 2477–2505 (1996)

    Article  MATH  Google Scholar 

  49. Moen L.A., Langseth M., Hopperstad O.: Elastoplastic buckling of anisotropic aluminum, plate elements. J. Struct. Eng. 124, 712–719 (1998)

    Article  Google Scholar 

  50. Legarth B.N., Tvergaard V., Kuroda M.: Effects of plastic anisotropy on crack-tip behaviour. Int. J. Fract. 117, 297–312 (2002)

    Article  Google Scholar 

  51. Hutchinson J.W.: Plasticity at the micron scale. Int. J. Solids Struct. 37(1–2), 225–238 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  52. Kuroda M., Tvergaard V.: Forming limit diagrams for anisotropic metal sheets with different yield criteria. Int. J. Solids Struct. 37, 5037–5059 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Nyvang Legarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legarth, B.N. Necking of anisotropic micro-films with strain-gradient effects. Acta Mech Sin 24, 557–567 (2008). https://doi.org/10.1007/s10409-008-0186-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0186-6

Keywords

Navigation