Skip to main content
Log in

Numerical simulation on micromixer based on synthetic jet

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper studied a concept of micromixer with a synthetic jet placed at the bottom of a rectangular channel. Due to periodic ejections from and suctions into the channel, the fluids are mixed effectively. To study the effects of the inlet velocity, the jet intensity and frequency, and the jet location on the mixing efficiency, 3-D numerical simulations of the micromixer have been carried out. It has been found that when the jet intensity and the frequency are fixed, the mixing efficiency increases when Re < 50, and decreases when Re > 50 with the best mixing efficiency achieved at Re = 50. When the ratio of the jet velocity magnitude to the inlet velocity is taken as 10 and the jet frequency is 100 Hz, the mixing index reaches the highest value. It has also been found that to get better mixing efficiency, the orifice of the synthetic jet should be asymmetrically located away from the channel’s centerline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D j :

mass diffusion coefficient, m2/s

D :

inlet width of channel, m

H :

cavity height, m

H c :

channel height, m

L :

orifice length, m

L c :

channel length, m

Mi :

mixing index

P :

pressure, Pa

Re :

Reynolds number

Sc :

Schmitt number

T :

time of period, s

U :

velocity, m/s

U in :

inlet velocity of channel, m/s

V z :

oscillating velocity magnitude, m/s

W :

cavity width, m

c :

concentration

d :

orifice width, m

f :

oscillating frequency, 1/s

t :

time, s

x :

coordinate in x direction, m

y :

coordinate in y direction, m

ν :

viscosity of fluid, m2/s

δ x :

dimensionless x of oscillating wall

δ y :

dimensionless y of oscillating wall

References

  1. Squires T.M., Quake S.T.: Microfluics: Fluid physics at the nanoliter scale. Rev. Modern Phys. 77, 977–1026 (2005)

    Article  Google Scholar 

  2. Stone H.A., Stroock A.D., Ajdari A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  Google Scholar 

  3. Ottino J.M., Wiggins S.: Introduction: Mixing in microfluidics. Roy. Soc. Lond. Trans. Ser. A 362, 923–935 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Nguyen N.T., Wu Z.: Micromixers—a review. J. Micromech. Microeng. 15, R1–R16 (2005)

    Article  Google Scholar 

  5. Wiggins S., Ottino J.M.: Foundations of chaotic mixing. Roy. Soc. Lond. Trans. Ser. A 362, 937–970 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bessoth F.G., deMello A.J., Manz A.: Microstructure for efficient continuous flow mixing. Anal. Commun. 36, 213–215 (1999)

    Article  Google Scholar 

  7. Branebjerg, J., et al.: Fast mixing by lamination. In: Proceedings of IEEE MEMS Workshop, San Diego, CA, USA, pp. 441–446 (1996)

  8. Voldman J.: An integrated liquid mixer/valve. J. MEMS 9, 295–302 (2000)

    Google Scholar 

  9. Mengaaud V., Josserand J., Girault H.H.: Mixing processes in a zigzag microchannel: finite element simulation and optical study. Anal. Chem. 74, 4279–4286 (2002)

    Article  Google Scholar 

  10. Liu R.H. et al.: Passive mixing in a 3D serpentine microchannel. J. MEMS 9, 190–197 (2000)

    Google Scholar 

  11. Vijayendran R.A. et al.: Evaluation of a 3D micromixer in a surface-based biosensor. Langmuir 19, 1824–1828 (2003)

    Article  Google Scholar 

  12. Strook A.D. et al.: Chaotic mixer for microchannels. Science 295, 647–651 (2002)

    Article  Google Scholar 

  13. EI Moctar A.O., Aubry N., Batton J.: Electrohydrodynamic microfluidic mixer. Lab Chip 3, 273–280 (2003)

    Article  Google Scholar 

  14. Wu, H.Y., Liu, C.H. A novel electrokinetic micromixer. In: Proceedings of 12th International Conference on Solid State Sensors and Actuators, pp. 631–634 (2003)

  15. Qian S., Bau H.H.: A chaotic electroosmotic stirrer. Anal. Chem. 74, 3616–3625 (2002)

    Article  Google Scholar 

  16. Suzuki, H., Ho, C.M. A magnetic force driven chaotic micro-mixer. In: Proc. 15th Int. Conf. on MEMS, pp. 40–43 (2002)

  17. Bottausci F., Mezic I., Meinhart C.D., Cardonne C.: Mixing in the shear superposition micromixer: Three-dimensional analysis. Phil. Trans. R. Soc. Lond. A 362, 1001–1018 (2004)

    Article  MathSciNet  Google Scholar 

  18. Zhen Y., Sohei M., Hiroshi G.: Ultrasonic micromixer for microfluidic systems. Sensors Actuat. A 93, 266–272 (2001)

    Article  Google Scholar 

  19. Smith B.L., Glezer A.: The formation and evolution of synthetic jets. Phys. Fluids 10, 2281–2297 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, S.: A numerical study of micro synthetic jet and its application in thermal management. PhD Dissertation, Georgia Institute of Technology (2005)

  21. Mautner T.: Application of the synthetic jet concept to low Reynolds number biosensor microfluidic flows for enhanced mixing: a numerical study using the lattice Boltzmann method. Biosensors Bioelectr. 19, 1409–1419 (2004)

    Article  Google Scholar 

  22. Zhou S., Hou A.P., Jiang Z.L., Ling D.J.: Separation control using synthetic vortex generator jets in axial compressor cascade. Acta Mech. Sin. 22(6), 521–527 (2006)

    Article  Google Scholar 

  23. Papautsky, I., Ammet, T., Frazier A.B. A review of laminar single-phase flow in microchannles. In: Proc. ASME International Mechanical Engineering Systems and Exposition, Nov. 11–16. IMECE, pp. 495–503 (2001)

  24. Hassan I.: Thermal-fluid MEMS devices: a decade of progress and challenges ahead. J. Heat Transfer 128, 1221–1233 (2006)

    Article  Google Scholar 

  25. Gad-el-Hak: The fluid mechanics of microdevices—the freeman scholar lecture. J. Fluids Eng. 121, 5–33 (1999)

    Article  Google Scholar 

  26. Xu B., Ooi K.T. et al.: Evaluation of viscous dissipation in liquid flow in microchannels. J. Micromech. Microeng. 13, 53–57 (2003)

    Article  Google Scholar 

  27. Hsieh S.S., Lin C.Y. et al.: Liquid flow in a micro-channel. J. Micromech. Microeng. 14, 436–445 (2004)

    Article  Google Scholar 

  28. Engler M., Kockmann N. et al.: Numerical and experimental investigations on liquid mixing in static micromixers. Chem. Eng. J. 101, 315–322 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghou Liu.

Additional information

This project was supported by the National Natural Science Foundation of China (10372099).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Xie, C., Zhang, X. et al. Numerical simulation on micromixer based on synthetic jet. Acta Mech Sin 24, 629–636 (2008). https://doi.org/10.1007/s10409-008-0183-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0183-9

Keywords

Navigation