Skip to main content
Log in

A car-following model with the anticipation effect of potential lane changing

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, a new car-following model is presented, taking into account the anticipation of potential lane changing by the leading vehicle. The stability condition of the model is obtained by using the linear stability theory. The modified Korteweg–de Vries (KdV) equation is constructed and solved, and three types of traffic flow in the headway-sensitivity space, namely stable, metastable and unstable ones, are classified. Both the analytical and simulation results show that anxiety about lane changing does indeed have an influence on driving behavior and that a consideration of lane changing probability in the car-following model could stabilize traffic flows. The quantitative relationship between stability improvement and lane changing probability is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chowdhury D., Santen L., Schreckenberg A.: Statistical physics of vehicular traffic and some related system. Phys. Rep. 329, 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bando M., Hasebe K., Nakayama A., Shibata A., Sugiyama Y.: Dynamic model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  3. Bando M., Hasebe K., Nakanishi K., Nakayama A.: Analysis of optimal velocity model with explicit delay. Phys. Rev. E 58, 5429–5435 (1998)

    Article  Google Scholar 

  4. Davis L.C.: Comment on analysis of optimal velocity model with explicit delay. Phys. Rev. E 66, 038101 (2002)

    Article  Google Scholar 

  5. Davis L.C.: Effect of cooperative merging on the synchronous flow phase of traffic. Physica A 361, 606–618 (2006)

    Article  Google Scholar 

  6. Lubashevsky I., Wagner P., Mahkne R.: Bounded rational driver models. Eur. Phys. J. B 32, 243–247 (2003)

    Article  Google Scholar 

  7. Lubashevsky I., Wagner P., Mahkne R.: Rational-driver approximation in car-following theory. Phys. Rev. E 68, 056109 (2003)

    Article  Google Scholar 

  8. Komatsu T., Sasa S.I.: Kink solution charactering traffic congestion. Phys. Rev. E 52, 5574–5582 (1995)

    Article  Google Scholar 

  9. Helbing D., Tilch B.: Generalized force model of traffic flow. Phys. Rev. E 58, 133–138 (1998)

    Article  Google Scholar 

  10. Treiber M., Hennecke A., Helbing D.: Derivation, properties, and simulation of a gas-kinetic-based, nonlocal traffic model. Phys. Rev. E 59, 239–253 (1999)

    Article  Google Scholar 

  11. Treiber M., Hennecke A., Helbing D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805–1824 (2000)

    Article  Google Scholar 

  12. Jiang R., Wu Q.S., Zhu Z.J.: Full velocity difference model for car-following theory. Phys. Rev. E 64, 017101 (2001)

    Article  Google Scholar 

  13. Xue Y.: Analysis of the stability and density waves for traffic flow. Chin. Phys. 11, 1128–1134 (2002)

    Article  Google Scholar 

  14. Nagatani T.: Stability and enhancement of traffic flow by next-nearest-neighbor interaction. Phys. Rev. E 60, 6395–6401 (1999)

    Article  Google Scholar 

  15. Lenz H., Wagner C.K., Sollacher R.: Multi-anticipative car-following model. Eur. Phys. J. B 7, 331–335 (1999)

    Article  Google Scholar 

  16. Hasebe K., Nakayama A., Sugiyama Y.: Dynamical model of a cooperative driving system. Phys. Rev. E 68, 026102 (2003)

    Article  Google Scholar 

  17. Hasebe K., Nakayama A., Sugiyama Y.: Equialence of linear response among extended optimal velocity models. Phys. Rev. E 69, 017103 (2004)

    Article  Google Scholar 

  18. Ge H.X., Dai S.Q., Dong L.Y., Xue Y.: Stabilization effect of traffic flow in an extended car-following model based on intelligent transportation system application. Phys. Rev. E 70, 066134 (2004)

    Article  Google Scholar 

  19. Zhao X.M., Gao Z.Y.: A new car-following model: full velocity and acceleration difference model. Eur. Phys. J. B 47, 145–150 (2005)

    Article  Google Scholar 

  20. Wang T., Gao Z.Y., Zhao X.M.: Multiple velocity difference model and its stability analysis (in Chinese). Acta Phys. Sin. 55, 634–640 (2006)

    Google Scholar 

  21. Gipps P.G.: A behavioural car-following model for computer simulation. Transp. Res. B 15, 105–111 (1981)

    Article  Google Scholar 

  22. Gipps P.G.: A model for the lane-changing decision. Transp. Res. B 20, 403–414 (1986)

    Article  Google Scholar 

  23. Spyropoulou I.: Simulation using Gipps’ car-following model an in-depth analysis. Transportmetrica 3, 231–245 (2007)

    Article  Google Scholar 

  24. Kurata S., Nagatani T.: Spatio-temporal dynamics of jams in two-lane traffic flow with a blockage. Physica A 318, 537–550 (2003)

    Article  MATH  Google Scholar 

  25. Nagai R., Nagatani T., Taniguchi N.: Traffic states and jamming transitions introduced by a bus in two-lane traffic flow. Physica A 350, 548–562 (2005)

    Article  Google Scholar 

  26. Tang T.Q., Huang H.J.: Continuum models for freeways with two lanes and numerical tests. Chin. Sci. Bull. 49, 2097–2104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Huang H.J., Tang T.Q., Gao Z.Y.: Continuum modeling for two-lane traffic flow. Acta Mech. Sin. 22, 132–137 (2006)

    Google Scholar 

  28. Tang T.Q., Huang H.J., Xue Y.: An improved two-lane traffic flow lattice model (in Chinese). Acta Phys. Sin. 55, 4026–4031 (2006)

    Google Scholar 

  29. Tang T.Q., Huang H.J., Gao Z.Y.: Stability of car-following model on two lanes. Phys. Rev. E 72, 066124 (2005)

    Article  Google Scholar 

  30. Tang T.Q., Huang H.J., Wong S.C., Jiang R.: Lane-changing analysis for two-lane traffic flow. Acta Mech. Sin. 23, 49–54 (2007)

    Article  Google Scholar 

  31. Tang T.Q., Huang H.J., Xu X.Y., Xue Y.: Analysis of density wave in two-lane traffic. Chin. Phys. Lett. 24, 1410–143 (2007)

    Article  Google Scholar 

  32. Tang C.F., Jiang R., Wu Q.S.: Extended speed gradient model for traffic flow on two-lane freeways. Chin. Phys. 16, 1570–1575 (2007)

    Article  Google Scholar 

  33. Huang D.W.: Lane-changing behavior on highways. Phys. Rev. E 66, 026124 (2002)

    Article  Google Scholar 

  34. Tang T.Q., Huang H.J., Gao Z.Y., Wong S.C.: Interactions of waves in the speed-gradient traffic flow model. Physica A 380, 481–489 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Huang.

Additional information

The project supported by the National Natural Science Foundation of China (70701002, 70521001), the National Basic Research Program of China (2006CB705503), and the Research Grants Council of the Hong Kong Special Administrative Region (HKU7187/05E).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, T., Huang, H., Wong, S.C. et al. A car-following model with the anticipation effect of potential lane changing. Acta Mech Sin 24, 399–407 (2008). https://doi.org/10.1007/s10409-008-0163-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0163-0

Keywords

Navigation