Skip to main content
Log in

Advances in dynamics and control of tethered satellite systems

  • Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

An Erratum to this article was published on 03 July 2008

Abstract

The concept of tethered satellite system (TSS) promises to revolutionize many aspects of space exploration and exploitation. It provides not only numerous possible and valuable applications, but also challenging and interesting problems related to their dynamics, control, and physical implementation. Over the past decades, this exciting topic has attracted significant attention from many researchers and gained a vast number of analytical, numerical and experimental achievements with a focus on the two essential aspects of both dynamics and control. This review article presents the historic background and recent hot topics for the space tethers, and introduces the dynamics and control of TSSs in a progressive manner, from basic operating principles to the state-of-the-art achievements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cosmo, M.L., Lorenzini, E.C.: Tethers in Space Handbook, 3rd edn. NASA, Washington DC (1997)

    Google Scholar 

  2. Modi, V.J., Lakshmanan, P.K., Misra, A.K.: Dynamics and control of tethered spacecraft: a brief overview. In: AIAA Dynamics Specialist Conference. Long Beach, California, 5–6 April (1990)

  3. Kumar K.D.: Review of dynamics and control of nonelectrodynamic tethered satellite systems. J. Spacecr. Rockets 43(4), 705–720 (2006)

    Article  Google Scholar 

  4. Cartmell M.P., Mckenzie D.J.: A review of space tether research. Prog. Aerosp. Sci. 44(1), 1–21 (2008)

    Article  Google Scholar 

  5. Estes, R.D., Lorenzini, E.C., Santangelo, A.: An overview of electrodynamic tethers. In: The 38th Aerospace Sciences Meeting and Exhibit. Reno, NV, January 10–13 (2000)

  6. Kim M., Hall C.D.: Control of a rotating variable-length tethered system. J. Guidance Control Dyn. 27(5), 849–858 (2004)

    Article  Google Scholar 

  7. Kim M., Hall C.D.: Dynamics and control of rotating tethered satellite systems. J. Spacecr. Rockets 44(3), 649–659 (2007)

    Article  Google Scholar 

  8. Pearson, J.: The real history of the space elevator. In: The 57th International Astronautical Congress, Valencia, 2–6 October (2006)

  9. Artsutanov, Y.: To the cosmos by electric train. Komsomolskaya Pravda, 31 July (1960)

  10. Pearson J.: The orbital tower: a spacecraft launcher using the Earth’s rotational energy. Acta Astronaut. 2(9–10), 785–799 (1975)

    Article  MathSciNet  Google Scholar 

  11. Iannotta B.: Nanotubes lift hopes for space elevator. Aerosp. Am. 44(3), 30–35 (2006)

    Google Scholar 

  12. Edwards B.C.: Design and deployment of a space elevator. Acta Astronaut. 47(10), 735–744 (2000)

    Article  Google Scholar 

  13. Aravind P.K.: The physics of the space elevator. Am. J. Phys. 75(2), 125–130 (2007)

    Article  Google Scholar 

  14. Steindl A., Troger H.: Is the sky-hook configuration stable?. Nonlinear Dyn. 40(4), 419–431 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen S.S., Misra A.K.: Elastic oscillations of the space elevator ribbon. J. Guidance Control Dyn. 30(6), 1711–1717 (2007)

    Article  Google Scholar 

  16. Iijima S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  17. Colombo G., Gaposchkin E.M., Grossi M.D. et al.: The skyhook: a shuttle-borne tool for low-orbital-altitude research. Meccanica 10(1), 3–20 (1975)

    Article  Google Scholar 

  18. Bilén S.G.: Space-borne tethers. IEEE Potentials 13(3), 47–50 (1994)

    Article  Google Scholar 

  19. Sasaki S., Oyama K.I., Kawashima N. et al.: Results from a series of tethered rocket experiments. J. Spacecr. Rockets 24(5), 444–453 (1987)

    Article  Google Scholar 

  20. Kruijff, M.: The Young Engineers’ satellite: flight results and critical analysis of a super-fast hands-on satellite project. In: The 50th International Astronautical Congress, Amsterdam, 4–8 October (1999)

  21. Williams, P., Hyslop, A., Stelzer, M., et al.: YES2 optimal trajectories in presence of eccentricity and aerodynamic drag. In: The 57th International Astronautical Congress, Valencia, 2–6 October (2006)

  22. Gates S.S., Koss S.M., Zedd M.F.: Advanced tether experiment deployment failure. J. Spacecr. Rockets 38(1), 60–68 (2001)

    Article  Google Scholar 

  23. Hoyt, R., Slostad, J., Mazzoleni, A.P.: The multi-application survivable tether (MAST) experiment. In: The 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, 20–23 July (2003)

  24. Williams, T., Moore, K.: Dynamics of tethered satellite formations. In: AAS/AIAA Spaceflight Mechanics Meeting, San Antonio, 27–30 January (2002)

  25. Lorenzini E.C.: Three-mass tethered system for micro-g/variable-g applications. J. Guidance Control Dyn. 10(3), 242–249 (1987)

    Article  Google Scholar 

  26. Hoffman, J.H., Mazzoleni, A.P.: Investigation of a tethered satellite system for generating artificial gravity. In: The 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, 20–23 July (2003)

  27. Padgett D.A., Mazzoleni A.P.: Nullcline analysis as an analytical tethered satellite mission design tool. J. Guidance. Control Dyn. 30(3), 741–752 (2007)

    Article  Google Scholar 

  28. Kumar K.D., Yasaka T.: Satellite attitude stabilization through kite-like tether configuration. J. Spacecr. Rockets 39(5), 755–760 (2002)

    Article  Google Scholar 

  29. Menon C., Bombardelli C.: Self-stabilising attitude control for spinning tethered formations. Acta Astronaut. 60(10–11), 828–833 (2007)

    Article  Google Scholar 

  30. Williams P., Yeo S., Blanksby C.: Heating and modeling effects in tethered aerocapture missions. J. Guidance Control Dyn. 26(4), 643–654 (2003)

    Article  Google Scholar 

  31. Jokic M.D., Daniel W.J.T.: Aerogravity-assist maneuvering of a tethered satellite system. J. Spacecr. Rockets 41(4), 614–621 (2004)

    Article  Google Scholar 

  32. Gläβel H., Zimmermann F., Brückner S., Schöttle U.M.: Adaptive neural control of the deployment procedure for tether-assisted re-entry. Aerosp. Sci. Technol. 8(1), 73–81 (2004)

    Article  Google Scholar 

  33. Lorenzini E.C.: Error-tolerant technique for catching a spacecraft with a spinning tether. J. Vib. Control 10(10), 1473–1491 (2004)

    Article  MATH  Google Scholar 

  34. Williams P., Blanksby C.: Prolonged payload rendezvous using a tether actuator mass. J. Spacecr. Rockets 41(5), 889–893 (2004)

    Article  Google Scholar 

  35. Williams P.: Spacecraft rendezvous on small relative inclination orbits using tethers. J. Spacecr. Rockets 42(6), 1047–1060 (2005)

    Article  Google Scholar 

  36. Williams P.: In-plane payload capture with an elastic tether. J. Guidance Control Dyn. 29(4), 810–821 (2006)

    Article  Google Scholar 

  37. Williams P.: Dynamics and control of spinning tethers for rendezvous in elliptic orbits. J. Vib. Control 12(7), 737–771 (2006)

    Article  MathSciNet  Google Scholar 

  38. Lorenzini E.C., Cosmo M.L., Kaiser M. et al.: Mission analysis of spinning systems for transfers from low orbits to geostationary. J. Spacecr. Rockets 37(2), 165–172 (2000)

    Article  Google Scholar 

  39. Ziegler S.W., Cartmell M.P.: Using motorized tethers for payload orbital transfer. J. Spacecr. Rockets 38(6), 904–913 (2001)

    Article  Google Scholar 

  40. Williams P.: Optimal orbital transfer with electrodynamic tether. J. Guidance Control Dyn. 28(2), 369–372 (2005)

    Article  Google Scholar 

  41. Williams P.: Simple approach to orbital control using spinning electrodynamic tethers. J. Spacecr. Rockets 43(1), 253–256 (2006)

    Article  Google Scholar 

  42. Bonometti, J.A., Sorensen, K.F., Dankanich, J.W., et al.: 2006 status of the Momentum eXchange Electrodynamic Re-boost (MXER) tether development. In: The 42nd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference, Sacramento, 9–12 July (2006)

  43. Forward R.L., Hoyt R.P., Uphoff C.W.: Terminator tether: a spacecraft deorbit device. J. Spacecr. Rockets 37(2), 187–196 (2000)

    Article  Google Scholar 

  44. Yamaigiwa Y., Hiragi E., Kishimoto T.: Dynamic behavior of electrodynamic tether deorbit system on elliptical orbit and its control by Lorentz force. Aerosp. Sci. Technol. 9(4), 366–373 (2005)

    Article  Google Scholar 

  45. Takeichi N.: Practical operation strategy for deorbit of an electrodynamic tethered system. J. Spacecr. Rockets 43(6), 1283–1288 (2006)

    Article  Google Scholar 

  46. Kawamoto S., Makida T., Sasaki F. et al.: Precise numerical simulations of electrodynamic tethers for an active debris removal system. Acta Astronaut. 59(1–5), 139–148 (2006)

    Article  Google Scholar 

  47. Pardini C., Hanada T., Krisko P.H. et al.: Are de-orbiting missions possible using electrodynamic tethers? Task review from the space debris perspective. Acta Astronaut. 60(10–11), 916–929 (2007)

    Article  Google Scholar 

  48. Bombardelli C., Lorenzini E.C., Quadrelli M.B.: Retargeting dynamics of a linear tethered interferometer. J. Guidance Control Dyn. 27(6), 1061–1067 (2004)

    Article  Google Scholar 

  49. Tragesser S.G., Tuncay A.: Orbital design of Earth-oriented tethered satellite formations. J. Astronaut. Sci. 53(1), 51–64 (2005)

    MathSciNet  Google Scholar 

  50. Eiden, M.J., Cartmell, M.P.: Overcoming the challenges: tether systems roadmap for space transportation applications. In: AIAA International Air and Space Symposium and Exposition, Dayton, 14–17 July (2003)

  51. Pearson, J.: High-payoff space tethers. In: The 57th International Astronautical Congress, Valencia, 2–6 October (2006)

  52. Beletsky, V.V., Levin, E.M.: Dynamics of space tether systems. Adv. Astronaut. Sci. 83 (1993)

  53. Carroll J.A.: Tether applications in space transportation. Acta Astronaut. 13(4), 165–174 (1986)

    Article  MATH  Google Scholar 

  54. Cui N.G., Qi N.M., Cheng J.R.: Calculation of the orbital parameters of a tethered satellite system after tether deployment and cut-off. J. Harbin Inst. Technol. 27(1), 97–100 (1995) (in Chinese)

    Google Scholar 

  55. Iess, L.: Space tethers: an overview. In: The 7th Spacecraft Charging Technology Conference, Noordwijk, 23–27 April (2001)

  56. Okawa Y., Kitamura S., Kawamoto S. et al.: An experimental study on carbon nanotube cathodes for electrodynamic tether propulsion. Acta Astronaut. 61(11–12), 989–994 (2007)

    Article  Google Scholar 

  57. Peláez J., Sanjurjo M.: Generator regime of self-balanced electrodynamic bare tethers. J. Spacecr. Rockets 43(6), 1359–1369 (2006)

    Article  Google Scholar 

  58. Johnson L., Estes R.D., Lorenzini E. et al.: Propulsive small expendable deployer system experiment. J. Spacecr. Rockets 37(2), 173–176 (2000)

    Article  Google Scholar 

  59. Peláez J., Lorenzini E.C., Lopez-rebollal O. et al.: A new kind of dynamic instability in electrodynamic tethers. J. Astronaut. Sci. 48(4), 449–476 (2000)

    Google Scholar 

  60. Krupa M., Poth W., Schagerl M. et al.: Modelling, dynamics and control of tethered satellite systems. Nonlinear Dyn. 43(1–2), 73–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wen H., Jin D.P., Hu H.Y.: Optimal feedback control of the deployment of a tethered subsatellite subject to perturbations. Nonlinear Dyn. 51(4), 501–514 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wen, H., Jin, D.P., Hu, H.Y.: Three-dimensional optimal deployment of a tethered subsatellite with an elastic tether. Int. J. Comput. Math. (2008), (in press)

  63. Mankala K.K., Agrawal S.K.: Dynamic modeling and simulation of satellite tethered systems. J. Vib. Acoust. 127(2), 144–156 (2005)

    Article  Google Scholar 

  64. Leamy M.J., Noor A.K., Wasfy T.M.: Dynamic simulation of a tethered satellite system using finite elements and fuzzy sets. Comput. Methods Appl. Mech. Eng. 190(37–38), 4847–4870 (2001)

    Article  MATH  Google Scholar 

  65. Williams P.: Deployment/retrieval optimization for flexible tethered satellite systems. Nonlinear Dyn. 52(1–2), 159–179 (2008)

    Article  MATH  Google Scholar 

  66. Kim E., Vadali S.R.: Modeling issues related to retrieval of flexible tethered satellite systems. J. Guidance Control Dyn. 18(5), 1169–1176 (1995)

    Article  Google Scholar 

  67. Zhu R.Z., Lei D., Lin H.B.: Sophisticated dynamical model of tethered satellite systems. J. Astronaut. 20(3), 7–12 (1999) (in Chinese)

    Google Scholar 

  68. Carter J.T., Greene M.: Simulation of single tether systems. Simulation 58(1), 42–48 (1992)

    Article  Google Scholar 

  69. Steiner W., Zemann J., Steindl A. et al.: Numerical study of large amplitude oscillations of a two-satellite continuous tether system with a varying length. Acta Astronaut. 35(9–11), 607–621 (1995)

    Article  Google Scholar 

  70. Elliott, A.S.: Efficient modeling of extensible cables and pulley systems in ADAMS. In: The 1st MSC. ADAMS European User Conference, London, 13–14 November (2002)

  71. Yu S.H.: Dynamic model and control of mass-distributed tether satellite system. J. Spacecr. Rockets 39(2), 213–218 (2002)

    Article  Google Scholar 

  72. Takeichi N., Natori M.C., Okuizumi N. et al.: Periodic solutions and controls of tethered systems in elliptic orbits. J. Vib. Control 10(10), 1393–1413 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  73. Peláez J., Andrés Y.N.: Dynamic stability of electrodynamic tethers in inclined elliptical orbits. J. Guidance Control Dyn. 28(4), 611–622 (2005)

    Article  Google Scholar 

  74. Peláez J., Lorenzini E.C.: Libration control of electrodynamic tethers in inclined orbit. J. Guidance Control Dyn. 28(2), 269–279 (2005)

    Article  Google Scholar 

  75. Williams P., Watanabe T., Blanksby C. et al.: Libration control of flexible tethers using electromagnetic forces and movable attachment. J. Guidance Control Dyn. 27(5), 882–897 (2004)

    Article  Google Scholar 

  76. Mankala K.K., Agrawal S.K.: Equilibrium-to-equilibrium maneuvers of rigid electrodynamic tethers. J. Guidance Control Dyn. 28(3), 541–545 (2005)

    Article  Google Scholar 

  77. Mankala K.K., Agrawal S.K.: Equilibrium-to-equilibrium maneuvers of flexible electrodynamic tethers in equatorial orbits. J. Spacecr. Rockets 43(3), 651–658 (2006)

    Article  Google Scholar 

  78. Zhou X., Li J.F., Baoyin H. et al.: Equilibrium control of electrodynamic tethered satellite systems in inclined orbits. J. Guidance Control Dyn. 29(6), 1451–1454 (2006)

    Article  Google Scholar 

  79. Lanoix E.L.M., Misra A.K., Modi V.J. et al.: Effect of electrodynamic forces on the orbital dynamics of tethered satellites. J. Guidance Control Dyn. 28(6), 1309–1315 (2005)

    Article  Google Scholar 

  80. Barkow B., Steindl A., Troger H.: A targeting strategy for the deployment of a tethered satellite system. IMA J. Appl. Math. 70(5), 626–644 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  81. Steindl A., Troger H.: Optimal control of deployment of a tethered subsatellite. Nonlinear Dyn. 31(3), 257–274 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  82. Steindl A., Steiner W., Troger H.: Optimal control of retrieval of a tethered subsatellite. Solid Mech. Appl. 122, 441–450 (2005)

    Article  Google Scholar 

  83. Williams P.: Application of pseudospectral methods for receding horizon control. J. Guidance Control Dyn. 27(2), 310–314 (2004)

    Article  Google Scholar 

  84. Williams, P., Trivailo, P.: On the optimal deployment and retrieval of tethered satellites. In: The 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, 10–13 July (2005)

  85. Williams P.: Libration control of tethered satellites in elliptical orbits. J. Spacecr. Rockets 43(2), 476–479 (2006)

    Article  Google Scholar 

  86. Jin D.P., Hu H.Y.: Optimal control of a tethered subsatellite of three degrees of freedom. Nonlinear Dyn. 46(1–2), 161–178 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  87. Okazaki M., Ohtsuka T.: Switching control for guaranteeing the safety of a tethered satellite. J. Guidance Control Dyn. 29(4), 822–830 (2006)

    Article  Google Scholar 

  88. Wen H., Jin D.P., Hu H.Y.: Time-optimal deployment of a tethered subsatellite based on differential inclusion. Chin. J. Theor. Appl. Mech. 40(1), 135–140 (2008) (in Chinese)

    MathSciNet  Google Scholar 

  89. Wen, H., Jin, D.P., Hu, H.Y.: Infinite-horizon control for retrieving a tethered subsatellite via an elastic tether. J. Guidance Control Dyn. (in press)

  90. Padgett D.A., Mazzoleni A.P.: Analysis and design for no-spin tethered satellite retrieval. J. Guidance Control Dyn. 30(5), 1516–1519 (2007)

    Google Scholar 

  91. Mantri P., Mazzoleni A.P., Padgett D.A.: Parametric study of deployment of tethered satellite systems. J. Spacecr. Rockets 44(2), 412–424 (2007)

    Article  Google Scholar 

  92. Tragesser, S.G.: Formation flying with tethered spacecraft. In: AIAA/AAS Astrodynamics Specialist Conference, Denver, 14–17 August (2000)

  93. Pizarro-chong, A., Misra, A.K.: Dynamics of a multi-tethered satellite formation. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, 16–19 August (2004)

  94. Pizarro-chong, A., Misra, A.K.: Dynamics of multi-tethered satellite formations. In: The 56th International Astronautical Congress, Fukuoka, 17–21 October (2005)

  95. Kumar K.D., Yasaka T.: Rotating formation flying of three satellites using tethers. J. Spacecr. Rockets 41(6), 973–985 (2004)

    Article  Google Scholar 

  96. Kumar K.D., Yasaka T.: Dynamics of rotating linear array tethered satellite system. J. Spacecr. Rockets 42(2), 373–378 (2005)

    Article  Google Scholar 

  97. Corrêa A.A., Gómez G.: Equilibrium configurations of a four-body tethered system. J. Guidance Control Dyn. 29(6), 1430–1435 (2006)

    Article  Google Scholar 

  98. Guerman A.D., Smirnov G., Paglione P. et al.: Stationary configurations of a tetrahedral tethered satellite formation. J. Guidance Control Dyn. 31(2), 424–428 (2008)

    Article  Google Scholar 

  99. Kojima H., Iwasaki M., Fujii H.A. et al.: Nonlinear control of librational motion of tethered satellites in elliptic orbits. J. Guidance Control Dyn. 27(2), 229–239 (2004)

    Article  Google Scholar 

  100. Kojima H., Sugimoto T.: Nonlinear control of a double pendulum electrodynamic tether system. J. Spacecr. Rockets 44(1), 280–284 (2007)

    Article  Google Scholar 

  101. Williams P.: Optimal deployment/retrieval of a tethered formation spinning in the orbital plane. J. Spacecr. Rockets 43(3), 638–650 (2006)

    Article  Google Scholar 

  102. Williams, P.: Optimal control of a spinning double-pyramid earth-pointing tether formation. In: The 57th International Astronautical Congress, Valencia, 2–6 October (2006)

  103. Mori O., Matunaga S.: Formation and attitude control for rotational tethered satellite clusters. J. Spacecr. Rockets 44(1), 211–220 (2007)

    Google Scholar 

  104. Chung S.J., Slotine J.J.E., Miller D.W.: Nonlinear model reduction and decentralized control of tethered formation flight. J. Guidance Control Dyn. 30(2), 390–400 (2007)

    Article  Google Scholar 

  105. Higuchi, K., Natori, M.C.: Ground experiment of motion control of retrieving space tether. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit, Kissimmee, 7–10 April (1997)

  106. Modi V.J., Pradhan S., Misra A.K.: Controlled dynamics of flexible orbiting tethered systems: analysis and experiments. J. Vib. Control 3(4), 459–497 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  107. Schultz F.W., Vigneron F.R., Jablonski A.M.: Horizontally-configured ground-test method for tethered satellites. Can. Aeronaut. Space J. 48(1), 97–106 (2002)

    Google Scholar 

  108. Schwartz J.L., Peck M.A., Hall C.D.: Historical review of air-bearing spacecraft simulators. J. Guidance Control Dyn. 26(4), 513–522 (2003)

    Article  Google Scholar 

  109. Jin D.P., Ding F.: Positioning control of in-plane motion of the tethered-payload system. J. Vib. Eng. 21(1), 1–6 (2008) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Y. Hu.

Additional information

The project supported by the National Natural Science Foundation of China (10672073) and the Innovation Fund for Graduate Students, Nanjing University of Aeronautics and Astronautics.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10409-008-0178-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, H., Jin, D. & Hu, H. Advances in dynamics and control of tethered satellite systems. Acta Mech Sin 24, 229–241 (2008). https://doi.org/10.1007/s10409-008-0159-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0159-9

Keywords

Navigation