Skip to main content
Log in

Solution of shallow-water equations using least-squares finite-element method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is pre- sented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercritical flows, and flows with smooth and sharp gradient changes. Advantages of the model include: (1) sources terms, such as the bottom slope, surface stresses and bed frictions, can be treated easily without any special treatment; (2) upwind scheme is no needed; (3) a single approximating space can be used for all variables, and its choice of approximating space is not subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) condition; and (4) the resulting system of equations is symmetric and positive-definite (SPD) which can be solved efficiently with the preconditioned conjugate gradient method. The model is verified with flow over a bump, tide induced flow, and dam-break. Computed results are compared with analytic solutions or other numerical results, and show the model is conservative and accurate. The model is then used to simulate flow past a circular cylinder. Important flow characteristics, such as variation of water surface around the cylinder and vortex shedding behind the cylinder are investigated. Computed results compare well with experiment data and other numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbot M.B., Damsgaard A., Rodenhuis G.S.: SYSTEM 21, “Jupiter”, A design system for two-dimensional nearly horizontal flows. J. Hydraul. Res. 11, 1–28 (1973)

    Google Scholar 

  2. Causon D.M., Ingram D.M., Mingham C.G., Yang G., Pearson R.V.: Calculation of shallow water flows using a Cartesian cut cell approach. Adv. Water Resour. 23, 545–562 (2000)

    Article  Google Scholar 

  3. Alcrudo F., Garcia-Navarro P.: A high resolution Godunov-type scheme in finite volume for the 2D shallow water equation. Int. J. Numer. Meth. Fluids 16, 489–505 (1993)

    Article  MATH  Google Scholar 

  4. Alessandro V., Caleffi V., Zanni A.: Case study: Malpasset dam-break simulation using a two-dimensional finite volume method. ASCE J. Hydraul. Eng. 128(5), 460–472 (2002)

    Article  Google Scholar 

  5. Cheng R.T.: Modeling of hydraulic systems by finite element methods. Adv. Hydrosci. 11, 207–284 (1978)

    Google Scholar 

  6. Gracia R., Kahawita R.A.: Numerical solution of the St. Venant equations with the MacCormack finite element scheme. Int. J. Numer. Meth. Fluids 6, 507–527 (1986)

    Article  Google Scholar 

  7. Fujihara M., Borthwick A.G.L.: Godunov-type solution of curvilinear shallow-water equations. ASCE J. Hydraul. Eng. 126, 827–836 (2000)

    Article  Google Scholar 

  8. Stansby P.K., Zhou J.G.: Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. Int. J. Numer. Meth. Fluids 28, 541–563 (1998)

    Article  MATH  Google Scholar 

  9. Zhou J.G.: A lattice Boltzmann model for the shallow water equations. Comput. Methods Appl. Mech. Eng. 191, 3527–3539 (2002)

    Article  MATH  Google Scholar 

  10. Deang J.M., Gunzburger M.D.: Issues related to least-squares finite element methods for the Stokes equations. SIAM J. Sci. Comput. 20(3), 878–906 (1998)

    Article  MathSciNet  Google Scholar 

  11. Bochev P.B., Gunzburger M.D.: Finite element methods of least-squares type. SIAM Rev. 40(4), 789–837 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gerritsma M.I., Proot M.M.J.: Analysis of a discontinuous least squares spectral element method. J. Sci. Comput. 17(1-4), 297–306 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gunzburger M.D.: Finite Element Methods for Viscous Incompressible Flows. Academic Press, Boston (1989)

    MATH  Google Scholar 

  14. Girault V., Raviart P.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithm. Springer, Berlin (1986)

    Google Scholar 

  15. Carey G.F., Jiang B.N.: Element-by-element linear and nonlinear solution scheme. Commun. Appl. Numer. Meth. 2, 145–153 (1986)

    Article  MATH  Google Scholar 

  16. Liang, S.J., Jan, Y.J.: Numerical analysis of mass conservation of the L 2 least-squares finite element methods for Stokes equations. In: Proceedings of the 5th Osaka Colloquium, Osaka, Japan, pp. 14–15 (2005)

  17. Liang S.J., Jan Y.J.: Numerical analysis of mass conservation property of the L 2 least-squares finite-element methods for Navier–Stokes equations. J. Aeronaut. Astronaut. Aviat. 38, 199–205 (2006)

    Google Scholar 

  18. Tang, J.H., Chen, C.F.: Numerical simulation of free overfall. The 9th National Computational Fluid Dynamics Conference, Tainan, Taiwan, pp. 496–503 (2002)

  19. Yulistiyanto B., Zech Y., Graf W.H.: Flow around a cylinder: Shallow-water modeling with diffusion-dispersion. ASCE J. Hydraul. Eng. 124(4), 419–429 (1998)

    Article  Google Scholar 

  20. Jiang B.N.: The Least-Squares Finite Element Method. Springer, Berlin (1998)

    MATH  Google Scholar 

  21. Reddy J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  22. Laibel J.P., Pinder G.F.: Least squares collocation of differential equations on irregularly shaped domain using orthogonal meshes. Numer. Methods Partial. Diff. Eqs. 5, 347–361 (1989)

    Article  Google Scholar 

  23. Toro E.: Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley, New York (2001)

    MATH  Google Scholar 

  24. Mingham C.G., Causon D.M.: High-resolution finite-volume method for shallow water flows. ASCE J. Hydraul. Eng. 124(6), 605–614 (1998)

    Article  Google Scholar 

  25. Fennema R.T., Chaudhry M.H.: Explicit methods for 2D transient free-surface flows. ASCE J. Hydraul. Eng. 116(11), 1013–1034 (1990)

    Article  Google Scholar 

  26. Glaister P.: Flux difference splitting for open channel flows. Int. J. Numer. Meth. Fluids 16, 629–654 (1993)

    Article  MATH  Google Scholar 

  27. Coutanceau M., Bouard R.: Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform transition. Part I: Steady flow. J. Fluid Mech. 79, 231–256 (1977)

    Article  Google Scholar 

  28. Dennis S.C.R., Chang G.Z.: Numerical solution for steady flow past a circular cylinder at Reynolds number up to 100. J. Fluid Mech. 42, 471–489 (1970)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Jye Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, SJ., Tang, JH. & Wu, MS. Solution of shallow-water equations using least-squares finite-element method. Acta Mech Sin 24, 523–532 (2008). https://doi.org/10.1007/s10409-008-0151-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0151-4

Keywords

Navigation