Skip to main content
Log in

Material and structural instabilities of single-wall carbon nanotubes

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The nonlinear atomistic interactions usually involve softening behavior. Instability resulting directly from this softening are called the material instability, while those unrelated to this softening are called the structural instability. We use the finite-deformation shell theory based on the interatomic potential to show that the tension instability of single-wall carbon nanotubes is the material instability, while the compression and torsion instabilities are structural instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pantano, A., Parks, D.M., Boyce, M.C.: Nonlinear structural mechanics based modeling of carbon nanotube deformation. Phys. Rev. Let. 91, 145504 (2004)

    Article  Google Scholar 

  2. Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  Google Scholar 

  3. Lu, J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997)

    Article  Google Scholar 

  4. Zhou, X., Zhou, J.J., Ou-Yang, Z.C.: Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B 62, 13692 (2000)

    Article  Google Scholar 

  5. Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001)

    Article  Google Scholar 

  6. Odegard, G.M., Gates, T.S., Nicholson, L.M., Wise, K.E.: Equivalent-continuum modeling of nano-structured materials. Comp. Sci. Technol. 62, 1869–1880 (2002)

    Article  Google Scholar 

  7. Jin, Y., Yuan, F.G.: Simulation of elastic properties of single-walled carbon nanotubes. Comp. Sci. Technol. 63, 1507–1515 (2003)

    Article  Google Scholar 

  8. Vodenitcharova, T., Zhang, L.C.: Effective wall thickness of a single-walled carbon nanotube. Phys. Rev. B 68, 165401 (2003)

    Article  Google Scholar 

  9. Goupalov, S.V.: Continuum model for long-wavelength phonons in two-dimensional graphite and carbon nanotubes. Phys. Rev. B 71, 085420 (2005)

    Article  Google Scholar 

  10. Wang, L., Zheng, Q., Liu, J.Z., Jiang, Q.: Size dependence of the thin-shell model for carbon nanotubes. Phys. Rev. Lett. 95, 105501 (2005)

    Article  Google Scholar 

  11. Huang, Y., Wu, J., Hwang, K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006)

    Article  Google Scholar 

  12. Shenderova, O.A., Zhirnov, V.V., Brenner, D.W.: Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27, 227–356 (2002)

    Article  Google Scholar 

  13. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  Google Scholar 

  14. Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 1783–1802 (2002)

    Article  Google Scholar 

  15. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, New York (1959)

    Google Scholar 

  16. Wu, J., Hwang, K.C., Huang, Y.: An atomstic-based finite-deformation shell theory for single-wall carbon nanotubes. J. Mech. Phys. Solids 56, 279–292 (2008). doi:10.1016/j.jmps.2007.05.008

    Google Scholar 

  17. Wu, J., Hwang, K.C., Song, J., Huang, Y.: A finite-deformation shell theory for carbon nanotubes based on the interatomic potential. Part II: instability analysis. J. Appl. Mech. (Accepted)

  18. Jiang, H., Feng, X.Q., Huang, Y., Hwang, K.C., Wu, P.D.: Defect nucleation in carbon nanotubes under tension and torsion: Stone-Wales transformation. Comput. Methods Appl. Mech. Eng. 193, 3419–3429 (2004)

    Article  MATH  Google Scholar 

  19. Rice, J.R.: The localization of plastic deformation. In: Koiter, W.T. (ed.) Theoretical and Applied Mechanics, pp. 207–220. North-Holland, Amsterdam (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Hwang, K.C., Song, J. et al. Material and structural instabilities of single-wall carbon nanotubes. Acta Mech Sin 24, 285–288 (2008). https://doi.org/10.1007/s10409-008-0146-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0146-1

Keywords

Navigation