Skip to main content
Log in

Spinodal surface instability of soft elastic thin films

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

When the thicknesses of thin films reduce to microns or even nanometers, surface energy and surface interaction often play a significant role in their deformation behavior and surface morphology. The spinodal surface instability induced by the van der Waals force in a soft elastic thin film perfectly bonded to a rigid substrate is investigated theoretically using the bifurcation theory of elastic structures. The analytical solution is derived for the critical condition of spinodal surface morphology instability by accounting for the competition of the van der Waals interaction energy, elastic strain energy and surface energy. Detailed examinations on the effect of surface energy, thickness and elastic properties of the film show that the characteristic wavelength of the deformation bifurcation mode depends on the film thickness via an exponential relation, with the power index in the range from 0.749 to 1.0. The theoretical solution has a good agreement with relevant experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M., Schlagowski, S.: Spinodal dewetting in liquid crystal and liquid metal films. Science 282, 916–919 (1998)

    Article  Google Scholar 

  2. Xia, Y.N., Rogers, J.A., Paul, K.E., Whitesides, G.M.: Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 (1999)

    Article  Google Scholar 

  3. Gates, B.D., Xu, Q.B., Stewart, M., Ryan, D., Willson, C.G., Whitesides, G.M.: New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005)

    Article  Google Scholar 

  4. Liu, J.L., Feng, X.Q., Yu, S.W.: Morphology of liquid drops and thin films on a solid surface with sinusoidal microstructures. Acta Mech. Sin. 22, 315–322 (2006)

    Article  Google Scholar 

  5. Korczagin, I., Lammertink, R.G.H., Hempenius, M.A., Golze, S., Vancso, G.J.: Surface nano- and microstructuring with organometallic polymers. Adv. Polym. Sci. 200, 91–117 (2006)

    Google Scholar 

  6. Shi, W.D., Feng, X.Q., Gao, H.J.: Two-dimensional model of vesicle adhesion on curved substrates. Acta Mech. Sin. 22, 529–535 (2006)

    Article  Google Scholar 

  7. Neto, C.: A novel approach to the micropatterning of proteins using dewetting of polymer bilayers. Phys. Chem. Chem. Phys. 9, 149–155 (2007)

    Article  Google Scholar 

  8. Xie, R., Karim, A., Douglas, J.F., Han, C.C., Weiss, R.A.: Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81, 1251–1254 (1998)

    Article  Google Scholar 

  9. Wang, J., Tolan, M., Seeck, O.H., Sinha, S.K., Bahr, O., Rafailovich, M., Sokolov, J.: Surfaces of strongly confined polymer thin films studied by X-ray scattering. Phys. Rev. Lett. 83, 564–567 (1999)

    Article  Google Scholar 

  10. Reiter, G.: Dewetting of thin polymer films. Phys. Rev. Lett. 68, 75–78 (1992)

    Article  MathSciNet  Google Scholar 

  11. Konnur, R., Kargupta, K., Sharma, A.: Instability and morphology of thin liquid films on chemically heterogeneous substrates. Phys. Rev. Lett. 84, 931–934 (2000)

    Article  Google Scholar 

  12. Wensink, K.D.F., Jerome, B.: Dewetting induced by density fluctuations. Langmuir 18, 413–416 (2002)

    Article  Google Scholar 

  13. Green, P.F.: Wetting and dynamics of structured liquid films. J. Polym. Sci. Pt. B- Polym. Phys. 41, 2219–2235 (2003)

    Article  Google Scholar 

  14. Tsui, O.K.C., Wang, Y.J., Zhao, H., Du, B.: Some views about the controversial dewetting morphology of polystyrene films. Eur. Phys. J. E. 12, 417–423 (2003)

    Article  Google Scholar 

  15. Thiele, U.: Open questions and promising new fields in dewetting. Eur. Phys. J. E. 12, 409–414 (2003)

    Article  Google Scholar 

  16. Schaffer, E., Thurn-Albrecht, T., Russell, T.P., Steiner, U.: Electrically induced structure formation and pattern transfer. Nature 403, 874–877 (2000)

    Article  Google Scholar 

  17. Huck, W.T.S.: Artificial skins—hierarchical wrinkling. Nat. Mater. 4, 271–272 (2005)

    Google Scholar 

  18. Vrij, A.: Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42, 23–33 (1966)

    Article  Google Scholar 

  19. Brochard-Wyart, F., Daillant, J.: Drying of solids wetted by thin liquid films. Can. J. Phys. 68, 1084–1088 (1990)

    Google Scholar 

  20. Sharma, A., Khanna, R.: Pattern formation in unstable thin liquid films. Phys. Rev. Lett. 81, 3463–3466 (1998)

    Article  Google Scholar 

  21. Yerushalmi-Rozen, R., Kerle, T., Klein, J.: Alternative dewetting pathways of thin liquid films. Science 285, 1254–1256 (1999)

    Article  Google Scholar 

  22. Tomar, G., Shankar, V., Shukla, S.K., Sharma, A., Biswas, G.: Instability and dynamics of thin viscoelastic liquid films. Eur. Phys. J. E. 20, 185–200 (2006)

    Article  Google Scholar 

  23. Chou, K.S., Kwong, Y.C.: Finite time rupture for thin films under van der Waals forces. Nonlinearity 20, 299–317 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Suo, Z.G., Zhang, Z.Y.: Epitaxial films stabilized by long-range forces. Phys. Rev. B 58, 5116–5120 (1998)

    Article  Google Scholar 

  25. Zhao, Y.P.: Morphological stability of epitaxial thin elastic films by van der Waals force. Arch. Appl. Mech. 72, 77–84 (2002)

    Article  MATH  Google Scholar 

  26. Zhang, Y.W.: Surface stability and evolution of biaxially strained epitaxial thin films. Appl. Phys. Lett. 87, 121916 (2005)

    Article  Google Scholar 

  27. Levine, M.S., Golovin, A.A., Davis, S.H., Voorhees, P.W.: Self-assembly of quantum dots in a thin epitaxial film wetting an elastic substrate. Phys. Rev. B 75, 205312 (2007)

    Article  Google Scholar 

  28. Gao, H.J., Nix, W.D.: Surface roughening of heteroepitaxial thin films. Annu. Rev. Mater. Sci. 29, 173–209 (1999)

    Article  Google Scholar 

  29. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, New York (1992)

    Google Scholar 

  30. Shenoy, V., Sharma, A.: Pattern formation in a thin solid film with interactions. Phys. Rev. Lett. 86, 119–122 (2001)

    Article  Google Scholar 

  31. Huang, S.Q., Li, Q.Y., Feng, X.Q., Yu, S.W.: Pattern instability of a soft elastic thin film under van der Waals forces. Mech. Mater. 38, 88–99 (2006)

    Article  Google Scholar 

  32. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, Inc., New York (2004)

    Google Scholar 

  33. Gibbs, J.W.: The Scientific Paper of J. Willard Gibbs. Longmans-Green, London (1906)

    Google Scholar 

  34. Cammarata, R.C.: Surface and interface stress effects in thin-films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  35. Cammarata, R.C., Sieradzki, K.: Surface and interface stresses. Annu. Rev. Mater. Sci. 24, 215–234 (1994)

    Article  Google Scholar 

  36. Vilmin, T., Raphael, E.: Dynamic instability of thin viscoelastic films under lateral stress. Phys. Rev. Lett. 97, 036105 (2006)

    Article  Google Scholar 

  37. Brandrup, J., Immergut, E.H. (eds): Polymer Handbook. Wiley, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Qiao Feng.

Additional information

The project supported by the National Natural Science Foundation of China (10525210 and 10732050) and 973 Project (2004CB619303).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Feng, X. Spinodal surface instability of soft elastic thin films. Acta Mech Sin 24, 289–296 (2008). https://doi.org/10.1007/s10409-008-0138-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0138-1

Keywords

Navigation