Skip to main content
Log in

Coarse grained molecular dynamics and theoretical studies of carbon nanotubes entering cell membrane

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Motivated by recent experimental observations that carbon nanotubes (CNT) can enter animal cells, here we conduct coarse grained molecular dynamics and theoretical studies of the intrinsic interaction mechanisms between CNT’s and lipid bilayer. The results indicate that CNT-cell interaction is dominated by van der Waals and hydrophobic forces, and that CNT’s with sufficiently small radii can directly pierce through cell membrane while larger tubes tend to enter cell via a wrapping mechanism. Theoretical models are proposed to explain the observed size effect in transition of entry mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Moghimi, S.M., Szebeni, J.: Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42, 463–478 (2003)

    Article  Google Scholar 

  2. Takeuchi, H., Yamamoto, H., Kawashima, Y.: Mucoadohesive nanoparticulate systems for peptide drug delivery. Adv. Drug Deliv. Rev. 47, 39–54 (2001)

    Article  Google Scholar 

  3. Muller, R.H., Jacobs, C., Kayser, O.: Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev. 47, 3–19 (2001)

    Article  Google Scholar 

  4. Kumar, M.N.V.R., Hellermann, G., Lockey, R.F., Mohapatra, S.S.: Nanoparticle-mediated gene delivery: state of the art. Expert Opin. Biol. Ther. 4, 1213–1224 (2004)

    Article  Google Scholar 

  5. Alivisatos, P.: The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52 (2004)

    Article  Google Scholar 

  6. Penn, S.G., He, L., Natan, M.J.: Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 7, 609–615 (2003)

    Article  Google Scholar 

  7. Drummond, T.G., Hill, M.G., Barton, J.K.: Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199 (2003)

    Article  Google Scholar 

  8. Cui, D.X., Tian, F.R., Ozkan, C., Wang, M., Gao, H.J.: Titel effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155, 73–85 (2005)

    Article  Google Scholar 

  9. Monteiro-Riviere, N.A., Nemanich, R.J., Inman, A.O., Wang, Y.Y., Riviere, J.E.: Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 155, 377–384 (2005)

    Article  Google Scholar 

  10. Kam, N.W.S., Jessop, T.C., Wender, P.A., Dai, H.J.: Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)

    Article  Google Scholar 

  11. Kam, N.W.S., Dai, H.J.: Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026 (2005)

    Article  Google Scholar 

  12. Kam, N.W.S., O’Connell, M., Wisdom, J.A., Dai, H.J.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 102, 11600–11605 (2005)

    Article  Google Scholar 

  13. Cherukuri, P., Bachilo, S.M., Litovsky, S.H., Weisman, R.B.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638–15639 (2004)

    Article  Google Scholar 

  14. Pantarotto, D., Briand, J., Prato, M., Bianco, A.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 1, 16–17 (2004)

    Article  Google Scholar 

  15. Lu, Q., Moore, J.M., Huang, G. et al.: RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 4, 2473–2477 (2004)

    Article  Google Scholar 

  16. Bianco, A., Hoebeke, J., godefroy, S. et al.: Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc. 127, 58–59 (2005)

    Article  Google Scholar 

  17. Smit, B., Esselink, K., Hibers, P.A.J. et al.: Computer simulations of surfactant self-assembly. Langmuir 9, 9–11 (1993)

    Article  Google Scholar 

  18. Palmer, B.J., Liu, J.: Simulations of micelle self-assembly in surfactant solutions. Langmuir 12, 746–753 (1996)

    Article  Google Scholar 

  19. Goetz, R., Lipowsky, R.: Computer simulations of bilayer membranes: self-assembly and interfacial tension. J. Chem. Phys. 108, 7397–7409 (1998)

    Article  Google Scholar 

  20. Den Otter, W.K., Briels, W.J.: The bending rigidity of an amphiphilic bilayer from equilibrium and nonequilibrium molecular dynamics. J. Chem. Phys. 118, 4712–4720 (2003)

    Article  Google Scholar 

  21. Von Gottberg, F.K., Smith, K.A., Hatton, T.A.: Stochastic dynamics simulation of surfactant self-assembly. J. Chem. Phys. 106, 9850–9857 (1997)

    Article  Google Scholar 

  22. Noguchi, H., Takasu, M.: Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. Phys. Rev. E 64, 041913–041919 (2001)

    Article  Google Scholar 

  23. Marrink, S.J., de Vries, A.H., Mark, A.E.: Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108, 750–760 (2004)

    Article  Google Scholar 

  24. Berendsen, H.J.C., Postma, J.P.M., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Comp. Phys. 81, 3684–3690 (1984)

    Google Scholar 

  25. Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995)

    Article  Google Scholar 

  26. Jahn, R., Lang, T., Sudhof, T.C.: Membrane fusion. Cell 112, 519–533 (2003)

    Article  Google Scholar 

  27. White, J.M.: Viral and cellular membrane-fusion proteins. Annu. Rev. Physiol. 52, 675–697 (1990)

    Article  Google Scholar 

  28. Lopez, C.F., Nielsen, S.O., Moore, P.B., Klein, M.L.: Understanding nature’s design for a nanosyringe. Proc. Natl. Acad. Sci. USA 101, 4431–4434 (2004)

    Article  Google Scholar 

  29. Evans, E.A., Skalak, R.: Mechanics and thermodynamics of biomembranes. CRC Crit. Rev. Bioeng. 3, 181–330 (1979)

    Google Scholar 

  30. Rawicz, W., Olbrich, K.C., Mcintosh, T. et al.: Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000)

    Article  Google Scholar 

  31. Turley, W.D., Offen, H.W.: Lipid microviscosity of DMPC vesicles at high pressure. Dipyrenylpropane excimer fluorescence. J. Phys. Chem. 90, 1967–1970 (1986)

    Article  Google Scholar 

  32. Yang, F.Q., Li, J.C.M.: Impression creep of a thin film by vacancy diffusion. II. Cylindrical punch. J. Appl. Phys. 74, 4390–4397 (1993)

    Article  Google Scholar 

  33. Gao, H., Shi, W., Freund, L.B.: Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 102, 9469–9474 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajian Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Kong, Y. & Gao, H. Coarse grained molecular dynamics and theoretical studies of carbon nanotubes entering cell membrane. Acta Mech. Sin. 24, 161–169 (2008). https://doi.org/10.1007/s10409-007-0131-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-007-0131-0

Keywords

Navigation