Skip to main content
Log in

Microstructure observation and mechanical behavior modeling for limnetic nacre

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In the present research, microstructure of a kind of limnetic shell (Hyriopsis cumingii) is observed and measured by using the scanning electron microscopy, and mechanical behavior experiments of the shell nacre are carried out by using bending and tensile tests. The dependence of mechanical properties of the shell nacre on its microstructure is analyzed by using a modified shear-lag model, and the overall stress–strain relation is obtained. The experimental results reveal that the mechanical properties of shell nacre strongly depend on the water contents of the limnetic shell. Dry nacre shows a brittle behavior, whereas wetting nacre displays a strong ductility. Compared to the tensile test, the bending test overestimates the strength and underestimates the Young’s modulus. The modified shear-lag model can characterize the deformation features of nacre effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curry J.D. (1977). Mechanical properties of mother of pearl in tension. Proc. R. Soc. London B 196: 443–463

    Google Scholar 

  2. Kamat S., Su X., Ballarini R. and Heuer A.H. (2000). Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405: 1036–1040

    Article  Google Scholar 

  3. Jackson A.P., Vincent J.F.V. and Turner R.M. (1988). The mechanical design of nacre. Proc. R. Soc. London B 234: 415–440

    Article  Google Scholar 

  4. Menig R., Meyers M.H., Meyers M.A. and Vecchio K.S. (2000). Quasi-static and dynamic mechanical response of haliotis rufescens (abalone) shells. Acta Mater. 48: 2383–2398

    Article  Google Scholar 

  5. Menig R., Meyers M.H., Meyers M.A. and Vecchio K.S. (2001). Quasi-static and dynamic mechanical response of strombus gigas (conch) shells. Mater. Sci. Eng. A 297: 203–211

    Article  Google Scholar 

  6. Almqvist N., Thomson N.H., Smith B.L., Stucky G.D., Morse D.E. and Hansma P.K. (1999). Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 7: 37–43

    Google Scholar 

  7. Jackson A.P. and Vincent J.F.V. (1999). Comparason of nacre with other ceramic composites. J. Mater. Sci. 25: 3173–3178

    Article  Google Scholar 

  8. Wang R.Z., Suo Z., Evans A.G., Yao N. and Aksay I.A. (2001). Deformation mechanisms in nacre. J. Mater. Res. 16: 2485–2493

    Google Scholar 

  9. Evans A.G., Suo Z., Wang R.Z., Aksay I.A., He M.Y. and Hutchinson J.W. (2001). Model for the robust mechanical behavior of nacre. J. Mater. Res. 16: 2475–2484

    Google Scholar 

  10. Song F., Soh A.K. and Bai Y.L. (2003). Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24: 3621–3631

    Article  Google Scholar 

  11. Song F. and Bai Y.L. (2003). Effects of nanstructures on the fracture strength of the interfaces in nacre. J. Mater. Res. 18(8): 1741–1744

    Google Scholar 

  12. Song F. and Bai Y.L. (2001). Mineral bridges of nacre and its effects. Acta Mech. Sin. 17(3): 251–257 doi:10.1007/BF02486881

    Article  Google Scholar 

  13. Katti K.S., Katti D.R., Pradhan S.M. and Bhosle A. (2005). Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20(5): 1097–1100

    Article  Google Scholar 

  14. Barthelata F., Tang H., Zavattieri P.D., Li C.M. and Espinos H.D. (2006). On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55(2): 306–337

    Article  Google Scholar 

  15. Wang R.Z., Wen H.B. and Cui F.Z. (1995). Observation of damage morphologies in nacre during deformation and fracture. J. Mater. Sci. 30: 2299–2304

    Article  Google Scholar 

  16. Bruet B.J.F., Qi H.J., Boyce M.C., Panas R., Tai K., Frick L. and Ortiz C. (2005). Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc trochus niloticus. J. Mater. Res. 20(11): 3157–3157

    Article  Google Scholar 

  17. Gao H., Ji B., JKager I.L., Arzt E. and Fratzl P. (2003). Materials become insensitive to flaws at nanoscale:lessons from nature. Proc. Natl. Acad. Sci. USA 100: 5597–5600

    Article  Google Scholar 

  18. Ji B. and Gao H. (2004). Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52: 1963–1990

    Article  MATH  Google Scholar 

  19. Kotha S.P., Li Y. and Guzelsu N. (2001). Micromechanical model of nacre tested in tension. J. Mater. Sci. 36: 2001–2007

    Article  Google Scholar 

  20. Sarikaya, M., Gunnison, K.E., Yasrebi, M., Milius, D.L., Aksay, I.A.: Seashells as a natural model to study laminated composites. In: Biotechnology and Composite Materials, Am. Soc. Comp. Proc. Fifth Tech. Conf., Technomic, Lancaster, PA, 176 pp. (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueguang Wei.

Additional information

The project supported by the National Natural Science Foundation of China (10432050, 10428207 and 10672163), the Chinese Academy of Sciences (KJCX2-YW-M04) and the Institute of Mechanics through Innovation Project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, S., Wei, Y. Microstructure observation and mechanical behavior modeling for limnetic nacre. Acta Mech. Sin. 24, 83–89 (2008). https://doi.org/10.1007/s10409-007-0125-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-007-0125-y

Keywords

Navigation