Skip to main content
Log in

A molecular mechanics approach for analyzing tensile nonlinear deformation behavior of single-walled carbon nanotubes

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, by capturing the atomic information and reflecting the behaviour governed by the nonlinear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single-walled carbon nanotubes (SWCNT’s) is established to describe the nonlinear stress-strain curve of SWCNT’s and to predict both the elastic properties and breaking strain of SWCNT’s during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S. (1991). Helical microtubes of graphitic carbon. Nature 354: 56–58

    Article  Google Scholar 

  2. Lu J.P. (1997). Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79(7): 1297–1300

    Article  Google Scholar 

  3. Yakobson B.I., Brabec C.J. and Bernholc J. (1996). Nanomechanics of carbon tubes: instability beyond linear response. Phys. Rev. Lett. 76: 2511–2514

    Article  Google Scholar 

  4. Yao N. and Vincenzo L. (1998). Young’s modulus of single–walled carbon nanotubes. J. Appl. Phys. 84(4): 1939–1943

    Article  Google Scholar 

  5. Treacy M.M., Ebbesen T.W. and Gibson J.M. (1996). Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381: 678

    Article  Google Scholar 

  6. Zhang P., Huang Y., Geubelle P.H., Klein P.A. and Hwang K.C. (2002). The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solids Struct. 39: 3893–3906

    Article  MATH  Google Scholar 

  7. Li C.Y. and Chou T.W. (2003). A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40: 2487–2499

    Article  MATH  Google Scholar 

  8. Chang T.C. and Gao H.J. (2003). Size-dependent elastic properties of a single–walled carbon nanotube via a molecular mechanics model. J. Mechanics Phys. Solids 51: 1059–1074

    Article  MATH  Google Scholar 

  9. Chang T., Geng J. and Guo X. (2005). Chirality- and size-dependent elastic properties of single-walled carbon nanotubes. Appl. Phys. Lett. 87: 251929

    Article  Google Scholar 

  10. Chang T., Geng J. and Guo X. (2006). Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc. R. Soc. A 462: 2523–2540

    Article  Google Scholar 

  11. Geng J. and Chang T. (2006). Nonlinear stick-spiral model for predicting mechanical behavior of single-walled carbon nanotubes. Phys. Rev. B Condens. Matter and Mater. Phys. 74(24): 245428

    Google Scholar 

  12. Burkert, U., Allinger, N.L.: Molecular Mechanics. ACS Monograph 177. American Chemical Society, Washington, DC (1982)

  13. Li C.Y. and Chou T.W. (2003). Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63: 1517–1524

    Article  Google Scholar 

  14. Li C.Y. and Chou T.W. (2003). Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68: 073405

    Article  Google Scholar 

  15. Li C.Y. and Chou T.W. (2004). Elastic properties of single–walled carbon nanotubes in transverse directions. Physical Review B 69: 073401

    Article  Google Scholar 

  16. Li C.Y. and Chou T.W. (2004). Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mechan. Mater. 36: 1047–1055

    Article  Google Scholar 

  17. Li C.Y. and Chou T.W. (2004). Mass detection using carbon nanotube-based nanomechanical resonators. Appl. Phys. Lett. 84(25): 5246–5248

    Article  Google Scholar 

  18. Li C.Y. and Chou T.W. (2004). Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. Appl. Phys. Lett. 84(1): 121–123

    Article  Google Scholar 

  19. Pan Z.W., Xie S.S., Lu L., Chang B.H., Sun L.F., Zhou W.Y. and Wang G. (1999). Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl. Phys. Lett. 74(21): 3152–3154

    Article  Google Scholar 

  20. Zhou L.G. and Shi S.Q. (2002). Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage. Comput. Materi. Sci. 23: 166–174

    Article  Google Scholar 

  21. Yakobson B.I., Campbell M.P., Brabed C.J. and Bernholc J. (1997). High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Materi. Sci. 8: 341–348

    Article  Google Scholar 

  22. Brenner D.W. (1990). Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42: 9458–9471

    Article  Google Scholar 

  23. Brenner D.W., Shenderova O.A., Harrison J.A., Stuart S.J., Ni B. and Sinnott S.B. (2002). A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14: 783–802

    Article  Google Scholar 

  24. Klein, P.A.: A virtual internal bond approach to modeling crack nucleation and growth. Ph.D. dissertation, Stanford University, Palo Alto, CA 94305 (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daining Fang.

Additional information

The project supported by the National Natural Science Foundation of China (10121202, 90305015 and 10328203), the Key Grant Project of Chinese Ministry of Education (0306) and the Research Grants Council of the Hong Kong Special Administrative Region, China (HKU 7195/04E).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Fang, D., Soh, A.K. et al. A molecular mechanics approach for analyzing tensile nonlinear deformation behavior of single-walled carbon nanotubes. Acta Mech. Sin. 23, 663–671 (2007). https://doi.org/10.1007/s10409-007-0116-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-007-0116-z

Keywords

Navigation