Skip to main content
Log in

Simulation of bluff body stabilized flows with hybrid RANS and PDF method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The motivation of this study is to investigate the turbulence–chemistry interactions by using probability density function (PDF) method. A consistent hybrid Reynolds Averaged Navier–Stokes (RANS)/PDF method is used to simulate the turbulent non-reacting and reacting flows. The joint fluctuating velocity–frequency–composition PDF equation coupled with the Reynolds averaged density, momentum and energy equations are solved on unstructured meshes by the Lagrangian Monte Carlo (MC) method combined with the finite volume (FV) method. The simulation of the axisymmetric bluff body stabilized non-reacting flow fields is presented in this paper. The calculated length of the recirculation zone is in good agreement with the experimental data. Moreover, the significant change of the flow pattern with the increase of the jet-to-coflow momentum flux ratio is well predicted. In addition, comparisons are made between the joint PDF model and two different Reynolds stress models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pope S.B. (1985). PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11: 119–192

    Article  MathSciNet  Google Scholar 

  2. Pope S.B. (1995). Particle method for turbulent flows: integration of stochastic model equations. J. Comput. Phys. 117: 332–349

    Article  MATH  Google Scholar 

  3. Xu J., Pope S.B. (1999). Assessment of numerical accuracy of PDF/Monte Carlo methods for turbulent reacting flows. J. Comput. Phys. 152: 192–230

    Article  MATH  Google Scholar 

  4. Correa S.M., Pope S.B. (1992). Comparison of a Monte Carlo PDF finite-volume mean flow model with bluff-body Raman Data. Proc. Combust. Inst. 24: 279–285

    Google Scholar 

  5. Haworth D.C., Sherif H., Tahry E.l. (1990). Probability density function approach for multidimensional turbulent flow calculations with application to in-cylinder flows in reciprocation engines. AIAA J. 29(2): 208–218

    Google Scholar 

  6. Correa S.M., Gulati A. (1992). Measurements and modeling of a bluff body stabilized flame. Combust. Flame 89: 195–213

    Article  Google Scholar 

  7. Saxena V., Pope S.B. (1998). PDF calculations of major and minor species in a turbulent piloted jet flame. Proc. Combust. Inst. 27: 1081–1086

    Google Scholar 

  8. Muradoglu M., Jenny P., Pope S.B., Caughey D.A. (1999). A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 154: 342–371

    Article  MATH  MathSciNet  Google Scholar 

  9. Jenny P., Pope S.B., Muradoglu M., Caughey D.A. (2001). A hybrid algorithm for the joint PDF equation of turbulent reactive flows. J. Comput. Phys. 166: 218–252

    Article  MATH  MathSciNet  Google Scholar 

  10. Muradoglu M., Pope S.B., Caughey D.A. (2001). The hybrid method for the PDF equations of turbulent reactive flows: consistency conditions and correction algorithms. J. Comput. Phys. 172: 841–878

    Article  MATH  MathSciNet  Google Scholar 

  11. Muradoglu M., Liu K., Pope S.B. (2003). PDF modeling of a bluff-body stabilized flame. Combust. Flame 132: 115–137

    Article  Google Scholar 

  12. Jenny P., Muradoglu M., Liu K., Pope S.B., Caughey D.A. (2001). PDF simulations of a bluff-body stabilized flow. J. Comput. Phys. 169: 1–23

    Article  MATH  Google Scholar 

  13. Ge H.W., Zhu M.M., Hu G.H., Chen Y.L. (2002). Hybrid Finite-volume/particle method to solve joint PDF equations (in Chinese). J. Univ. Sci. Tech. China 32(5): 607–617

    Google Scholar 

  14. Zhu M.M., Ge H.W., Chen Y.L., Hu G.H. (2003). FV/MC hybrid algorithm for axisymmetric bluff body stabilised turbulent flows (in Chinese). Acta Mech Sinica 35(3): 332–336

    Google Scholar 

  15. Van Slooten P.R., Jayesh Pope S.B. (1998). Advances in PDF modeling for inhomogeneous turbulent flows. Phys. Fluids. 10(1): 246–265

    Article  MathSciNet  MATH  Google Scholar 

  16. Pope S.B. (1994). On the relationship between stochastic Lagrangian models of turbulence and second-moment closures. Phys. Fluids 6(2): 973–984

    Article  MATH  Google Scholar 

  17. Pope, S.B.: Turbulent Flows. Cambridge University Press, (2000)

  18. Gibson M.M., Launder B.E. (1978). Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86: 491–511

    Article  MATH  Google Scholar 

  19. Launder B.E. (1989). Second-Moment closure and its use in modeling turbulent industrial flows. Int. J. Numer. Meth. Fluids 9: 963–985

    Article  MathSciNet  Google Scholar 

  20. Speziale C.G., Sarkar S., Gatski T.B. (1991). Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227: 245–272

    Article  MATH  Google Scholar 

  21. Harle C., Carey G.F., Varghese P.L. (2000). Analysis of high speed non-equilibrium chemically reacting gas flows.Part II. A finite vlolume/finite element model and numerical studies. Int. J. Numer. Meth. Fluids 32: 691–709

    Article  MathSciNet  Google Scholar 

  22. Mohammadi, B.: Fluid dynamics computation with NSC2KE: An user-guide release 1.0. INRIA RT-0164, May (1994)

  23. Debiez C., Dervieux A. (2000). Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteady flow calculations. Comput. Fluids 29: 89–118

    Article  MATH  MathSciNet  Google Scholar 

  24. Roe P.L. (1981). Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43: 357–372

    Article  MATH  MathSciNet  Google Scholar 

  25. Poinsot T.J., Lele S.K. (1992). Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101: 104–129

    Article  MATH  MathSciNet  Google Scholar 

  26. Thompson K.W. (1987). Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68: 1–24

    Article  MATH  MathSciNet  Google Scholar 

  27. Pope S.B. (1994). Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26: 23–63

    Article  MathSciNet  Google Scholar 

  28. Muradoglu M., Pope S.B. (2002). Local time-stepping algorithm for solving probability density function turbulence model equations. AIAA J. 40(9): 1755–1763

    Article  Google Scholar 

  29. Löhner R., Ambrosiano J. (1990). A vectorized particle tracer for unstructured grids. J. Comput. Phys. 91: 22–31

    Article  MATH  Google Scholar 

  30. http://www.aeromech.usyd.edu.au/thermofluids/main_frame.htm

  31. Dally B.B., Fletcher D.F., Masri A.R. (1998). Flow and mixing fields of turbulent bluff-body jets and flames. Combust. Theory Modell. 2: 193–219

    Article  MATH  Google Scholar 

  32. Merci B., Dick E., Vierendeels J. (2001). Application of a new cubic turbulence model to piloted and bluff-body diffusion flames. Combust. Flame 126: 1533–1556

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minming Zhu.

Additional information

The project supported by the National Natural Science Foundation of China (50506028), and Action Scheme for Invigorating Education Towards the twenty-first century.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, M., Han, X., Ge, H. et al. Simulation of bluff body stabilized flows with hybrid RANS and PDF method. Acta Mech Sin 23, 263–273 (2007). https://doi.org/10.1007/s10409-007-0075-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-007-0075-4

Keywords

Navigation