Skip to main content
Log in

An analytical model for electrode–ceramic interaction in multilayer piezoelectric actuators

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The present paper develops an analytical model for multi-electrodes in multi-layered piezoelectric actuators, in which the electrodes are vertical to and terminated at the edges of the medium and electroelastic field concentrations ahead of the electrodes in the multilayer piezoelectric actuators are examined. By considering a representative unit in realistic multilayers, the problem is formulated in terms of electric potential between the electrode tips and results in a system of singular integral equations in which the electric potential is taken as unknown function. Effects are investigated of electrode spacing and piezoelectric coupling on the singular electroelastic fields at the electrode tips, and closed-form expressions are given for the electromechanical field near the electrode tips. Exact solution for un-coupled dielectrics is provided, where no piezoelectric coupling is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dos Santos E., Lucato S.L., Lupascu D.C., Kamlah M., Rodel J., Lynch C.S. (2001). Constrain-induced crack initiation at electrode edge in piezoelectric ceramics. Acta Mater. 49: 2751–2759

    Article  Google Scholar 

  2. Wang H., Singh R. (1997). Crack propagation in piezoelectric ceramics: effects of applied electric fields. J. Appl. Phys. 81: 7471–7479

    Article  Google Scholar 

  3. Suo Z., Kuo C.M., Barnett D.M., Willis J.R (1992). Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40: 739–765

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhang T.Y., Zhao M.H., Tong P. (2002). Fracture of piezoelectric ceramics. Adv. Appl. Mech. 38: 147–289

    Article  Google Scholar 

  5. Winzer S.R., Shankar N., Ritter A. (1989). Designing cofired multilayer electrostrictive actuators for reliability. J. Am. Ceram. Soc. 72: 2246–2257

    Article  Google Scholar 

  6. Hao T.H., Gong X., Suo Z. (1996). Fracture mechanics for the design of ceramic multilayer actuators. J. Mech. Phys. Solids 44(1): 23–48

    Article  Google Scholar 

  7. Shindo Y., Narita F., Sosa H. (1998). Electroelastic analysis of piezoelectric ceramics with surface electrodes. Int. J. Eng. Sci. 36: 1001–1009

    Article  Google Scholar 

  8. Ru C.Q. (2000). Exact solution for finite electrode layers embedded at the interface of two piezoelectric half-planes. J. Mech. Phys. Solids 48: 693–708

    Article  MATH  MathSciNet  Google Scholar 

  9. Ye R.Q., He L.H. (2001). Electric and stresses concentrations at the edge of parallel electrodes in piezoelectric ceramics. Int. J. Solids Struct. 38: 6941–6951

    Article  MATH  Google Scholar 

  10. He L.H., Ye R.Q. (2000). Concentration of electric field near electrodes on piezoelectric layer. Theor. Appl. Fract. Mech. 33: 101–106

    Article  Google Scholar 

  11. Chen C.D., Chue C.H. (2003). Fracture mechanics analysis of a composite piezoelectric strip with an internal semi-infinite electrode. Theor. Appl. Fract. Mech. 39: 291–314

    Article  MATH  Google Scholar 

  12. Shindo Y., Narita F., Horiguchi K., Magara Y., Yoshida M. (2003). Electric fracture and polarization switching properties of piezoelectric ceramic PZT studied by the modified small punch test. Acta Mater. 51: 4773–4782

    Article  Google Scholar 

  13. Li X.F., Lee K.Y. (2004). Electric and elastic behaviors of a piezoelectric ceramic with a charged surface electrode. Smart Mater. Struct. 13: 424–432

    Article  Google Scholar 

  14. Narita F., Yoshida M., Shindo Y. (2004). Electroelastic effect induced by electrode embedded at the interface of two piezoelectric half–planes. Mech. Mater. 36: 999–1006

    Article  Google Scholar 

  15. Shindo Y., Yoshida M., Narita F., Horiguchi K. (2004). Electroelastic field concentrations ahead of electrodes in multilayer piezoelectric actuators: experiment and finite element simulation. J. Mech. Phys. Solids 52: 1109–1124

    Article  MATH  Google Scholar 

  16. Yang F. (2004). Electromechanical interaction of linear piezoelectric materials with a surface electrode. J. Mater. Sci. 39: 2811–2820

    Article  Google Scholar 

  17. Wang B.L. (2004). A circular surface electrode on a piezoelectric layer. J. Appl. Phys. 95(8): 4267–4274

    Article  Google Scholar 

  18. Li X.F., Duan X.Y. (2001). Electroelastic analysis of a piezoelectric layer with electrodes. Int. J. Fract. 111: L73–L78

    Google Scholar 

  19. Hom C.L., Shankar N. (1995). A numerical analysis of relaxor ferroelectric multilayered actuators and 2–2 composite arrays. Smart Mater. Stuct. 4: 305–317

    Article  Google Scholar 

  20. Gong X., Suo Z. (1996). Reliability of ceramic multilayer actuators: a nonlinear finite element simulation. J. Mech. Phys. Solids 44: 751–769

    Article  Google Scholar 

  21. Furuta A., Uchino K. (1993). Dynamic observation of crack propagation in piezoelectric multilayer actuators. J. Am. Ceram. Soc. 76: 1615–1617

    Article  Google Scholar 

  22. Wang B.L., Mai Y.W. (2005). An electrode analysis for multilayer ceramic actuators. Sens. Actuators A Phys. 121(1): 203–212

    Article  Google Scholar 

  23. Nied H.F. (1987). Periodic array of cracks in a half plane subjected to arbitrary loading. ASME J. Appl. Mech. 54: 642–648

    Article  MATH  Google Scholar 

  24. Erdogan F., Ozturk M. (1995). Periodic cracking of functionally graded coatings. Int. J. Eng. Sci. 33: 2179–2195

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang B.L., Mai Y.W. (2006). Periodic antiplane cracks in graded coatings under static or transient loading. ASME J. Appl. Mech. 73(1): 134–142

    Article  MATH  Google Scholar 

  26. Suo Z. (1993). Models for breakdown-resistant dielectric and ferroelectric ceramics. J. Mech. Phys. Solids 41: 1155–1176

    Article  Google Scholar 

  27. Giannakopoulos A.F., Suresh S. (1999). Theory of indentation of piezoelectric materials. Acta Mater. 47: 2153–2164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Wang.

Additional information

The English text was polished by Yunming Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B.L., Han, J.C. An analytical model for electrode–ceramic interaction in multilayer piezoelectric actuators. Acta Mech Sin 23, 199–208 (2007). https://doi.org/10.1007/s10409-007-0064-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-007-0064-7

Keywords

Navigation