Skip to main content
Log in

An unsymmetric constitutive equation for anisotropic viscoelastic fluid

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid–liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie–Ericksen theory is described by the first Rivlin–Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion–extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extrudate of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a series of new anisotropic non-Newtonian fluid problems can be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han, S.F.: Constitutive Equation and Computational Analytical Theory of Non-Newtonian Fluids. Science Press, Beijing (2000) (in Chinese)

  2. Moldenaers P. and Mewis J. (1990). Relaxational phenomena and anisotropy in lyotropic polymeric liquid crystal. J. Non- Newtonian Fluid Mech. 34: 359–374

    Article  Google Scholar 

  3. Walker L. and Wagner N. (1994). Rheology of region I flow in a Lyotropic liquid crystal polymer: the effects of defect texture. J. Rheol. 38(5): 1525–1547

    Article  Google Scholar 

  4. Marrucci G. and Maffettonr P.L. (1999). Description of the liquid- crystalline phase of rodlike polymer at high shear rates. Macromolecules 22: 4076–4082

    Article  Google Scholar 

  5. Baek S.G., Magda J.J. and Larson R.G. (1993). Rheological differences among liquid-crystalline polymers I. The first and second normal stress differences of PBG solutions. J. Rheol. 37(6): 1201–1224

    Article  Google Scholar 

  6. Baek S.G., Magda J.J., Larson R.G., Hudson S.D. (1994) Rheological differences among liquid–crystalline polymers II. Disappearance of negative N 1 in densely packed lyotropic and thermotropes. J. Rheol. 38(5): 1473–1503

    Article  Google Scholar 

  7. Gotsis A.D. and Odriozola M.A. (2000). Extensional viscosity of a thermotropic liquid crystalline polymer. J. Rheol. 44(5): 1205–1225

    Article  Google Scholar 

  8. Wagner M.H.A., Ixner Th. and Geiger K. (1997). A note on the melt strength of liquid crystalline polymer. J. Rheol. 41(5): 1087–1093

    Article  Google Scholar 

  9. Mantia F.P. and Valenza A. (1989). Shear and nonisothermal elongational characterization of a liquid crystalline polymer. Polym. Eng. Sci. 29(10): 625–631

    Article  Google Scholar 

  10. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford, London (1986)

  11. Brave A.V., Menon R.K., Armstrong R.C. and Brown R.A. (1982). A constitutive equation for liquid crystalline polymer solution. J. Rheol. 36(4): 663–701

    Google Scholar 

  12. Ericksen J.L. (1961). Conservation laws for liquid crystals. Trans. Soc. Rheol. 5: 23–34

    Article  MathSciNet  Google Scholar 

  13. Green A.E. (1964). Anisotropic simple fluids. Proc. R. Soc. Lond. A 279: 437

    Google Scholar 

  14. Leslie, F.M.: Theory of flow phenomena in liquid crystals. In: Brown, G.H. (ed.) Advances in Liquid Crystals, vol. 1, p. 1. Academic, New York (1979)

  15. Smith G.F. and Rivlin R.S. (1957). The anisotropic tensor. Q. Appl. Math. 15: 308–314

    MATH  MathSciNet  Google Scholar 

  16. Ericksen J.L. (1960). Anisotropic fluids. Arch. Ration. Mech. Anal. 4: 231–237

    MATH  MathSciNet  Google Scholar 

  17. Chandrasekhar S. (1977) Liquid Crystals. Cambridge University Press, Cambridge

    Google Scholar 

  18. Truesdell C. (1951). A new definition of a fluid II. The Maxwell fluid. J. Math. Pure Appl. 30(9): 115–158

    MathSciNet  Google Scholar 

  19. Volkov V.S. and Kulichikhin V.G. (1990). Anisitropic viscoelasticity of liquid crystalline polymers. J. Rheol. 34(3): 281–293

    Article  Google Scholar 

  20. Volkov V.S. and Kulichikhin V.G. (2000). Non-symmetric viscoelasticity of anisotropic polymer liquids. Rheol. Acta 39(3): 360–370

    Article  Google Scholar 

  21. Larson R.G. (1993). Roll-cell instability in shearing flows of nematic polymers. J. Rheol. 37(2): 175–197

    Article  MathSciNet  Google Scholar 

  22. Han, S.F.: Constitutive equation of Maxwell-Oldroyd type for liquid crystalline polymer and its fluid flow. In: Proceedings of the 3rd International Conference on Fluid Mechanics, 1998, pp. 723–728. Beijing, Beijing Institute of Technology Press

  23. Han, S.F.: Constitutive equation of liquid crystalline polymer-anisotropic viscoelastic fluid. Acta Mech. Sin. 33(5), 588–600 (2001) (in Chinese)

    Google Scholar 

  24. Han S.F. (2004). Constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid. Acta Mech. Sin. 20(2): 46–53

    Google Scholar 

  25. Han, S.F.: Rheology of liquid crystalline polymer-Frontier in rheology. Mech. Eng. 3, 1–6 (2001) (in Chinese)

    Google Scholar 

  26. Han, S.F.: A constitutive equation of co-rotational type for liquid crystalline polymer and anisotropic material functions. In: Proceedings of the 4th Pacific Rim Confference on Rheology (PRCR 4), pp. 22–27 (2005)

  27. Tanner R.L. (1985) Engineering Rheology. Clarendon Press, Oxford

    Google Scholar 

  28. Zahorski, S.: Mechanics of viscoelastic fluids. Martinus Nijhoff Publishers, The Hague/Boston/London (1982)

  29. Green A.E. (1964). Anisotropic simple fluid. Proc. R. Soc. Lond. A 279: 437–445

    Google Scholar 

  30. Green A.E. (1964). A continuum theory of anisotropic fluids. Proc. Camb. Philos. Soc. 60: 123–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifang Han.

Additional information

The project supported by the National Natural Science Foundation of China (10372100, 19832050) (Key project). The English text was polished by Yunming Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S. An unsymmetric constitutive equation for anisotropic viscoelastic fluid. Acta Mech Sin 23, 149–158 (2007). https://doi.org/10.1007/s10409-007-0063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-007-0063-8

Keywords

Navigation