Skip to main content
Log in

Explicit solution of the radial breathing mode frequency of single-walled carbon nanotubes

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

On the basis of a molecular mechanics model, an analytical solution of the radial breathing mode (RBM) frequency of single-walled carbon nanotubes (SWCNTs) is obtained. The effects of tube chirality and tube diameter on the RBM frequency are investigated and good agreement between the present results and existing data is found. The present analytical formula indicates that the chirality and size dependent elastic properties are responsible for the effects of the chirality and small size on the RBM frequency of an SWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo W. and Guo Y. (2004). The coupled effects of mechanical deformation and electronic properties. Acta Mech. Sin 20(2): 192–198

    Google Scholar 

  2. Zou J., Ji B. and Feng X.Q. (2006). Self-assembly of single-walled carbon nanotubes into multiwalled carbon nanotubes in water: Molecular dynamics simulations. Nano. Lett 6(3): 430–434

    Article  Google Scholar 

  3. Chang T., Hou J. and Guo X. (2006). Reversible mechanical bistability of single-walled carbon nanotubes under axial strain. Appl. Phys. Lett. 88: 211906

    Article  Google Scholar 

  4. Jishi R.A., Venkataraman L. and Dresselhaus M.S. (1993). Phonon modes in carbon nanotubules. Chem. Phys. Lett 209: 77

    Article  Google Scholar 

  5. Bandow S., Asaka S. and Saito Y. (1998). Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett 80(17): 3779–3782

    Article  Google Scholar 

  6. Kurti J., Kressem G. and Kuzmany H. (1998). First-principles calculations of the radial breathing mode of single-wall carbon nanotubes. Phys. Rev. B 58: R8869

    Article  Google Scholar 

  7. Sanchez-Portal D., Artacho E. and Soler J.M. (1999). Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59(19): 12678–12688

    Article  Google Scholar 

  8. Jorio A., Saito R. and Hafner J.H. (2001). Structural (n, m) determination of isolated single wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett 86: 1118

    Article  Google Scholar 

  9. Dobardzic E., Milosevic I. and Nikolic B. (2003). single-wall carbon nanotubes phonon spectra: symmetry-based calculations. Phys. Rev. B 68: 045408

    Article  Google Scholar 

  10. Longhurst M.J. and Quirke N. (2005). The radial breathing mode of carbon nanotubes. Mol. simul 31: 135

    Article  Google Scholar 

  11. Li I.L., Li G.D. and Liu H.J. (2003). Chirality-dependent curvature effect in smallest single-walled carbon nanotubes. Appl. Phys. Lett 82(9): 1467–1469

    Article  Google Scholar 

  12. Kurti J., Zolyomi V. and Kertesz M. (2003). The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour. New J. Phys 5: 125

    Article  Google Scholar 

  13. Li Z.M. and Tang, Z.K. Siu G.G. et al. (2004). Raman characterization of 0.4 nm single-wall carbon nanotubes using the full-symmetry line group. Appl. Phys. Lett 84: 4101

    Article  Google Scholar 

  14. Damnjanovic M., Dobardzic E. and Milosevic I. (2004). Chirality dependence of the radial breathing mode: a simplemodel. J. Phys: Condens Matter 16: L505–L508

    Article  Google Scholar 

  15. Telg H., Maultzsch J. and Reich S. (2004). Chirality distribution and transition energies of carbon nanotubes. Phys. Rev. Lett 93(17): 177401

    Article  Google Scholar 

  16. Xiao Y., Li Z.M. and Yan X.H. (2005). Curvature effect on the radial breathing modes of single-walled carbon nanotubes. Phys. Rev. B 71: 233405

    Article  Google Scholar 

  17. Lawler H.M., Areshkin D. and Mintmire J.W. (2005). Radial-breathing mode frequencies for single-walled carbon nanotubes of arbitrary chirality: first-principles calculations. Phys. Rev. B 72: 233403

    Article  Google Scholar 

  18. Meyer J.C., Paillet M. and Michel T. (2005). Raman modes of index-identified freestanding single-walled carbon nanotubes. Phys. Rev. Lett 95: 217401

    Article  Google Scholar 

  19. Popov V.N. and Lambin P. (2006). Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes. Phys. Rev. B 73: 085407

    Article  Google Scholar 

  20. Chang T. and Gao H. (2003). Size dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51(5): 1059–1074

    Article  MATH  Google Scholar 

  21. Chang T., Geng J. and Guo X. (2005). Chirality- and size- dependent elastic properties of single-walled carbon nanotubes. Appl. Phys. Lett 87: 251929

    Article  Google Scholar 

  22. Chang T., Geng J. and Guo X. (2006). Prediction of chirality- and size- dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc. R. Soc. A 462: 2523–2540

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tienchong Chang.

Additional information

The project supported by the National Natural Science Foundation of China (10402019), Shanghai Rising-Star Program (05QMX1421), Shanghai Leading Academic Discipline Project (Y0103), and Key Project of Shanghai Committee of Science and Technology (04JC14034).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, T. Explicit solution of the radial breathing mode frequency of single-walled carbon nanotubes. Acta Mech Sin 23, 159–162 (2007). https://doi.org/10.1007/s10409-007-0059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-007-0059-4

Keywords

Navigation