Skip to main content
Log in

Two-dimensional model of vesicle adhesion on curved substrates

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We develop a two dimensional model of a vesicle adhered on a curved substrate via long-range molecular interactions while subjected to a detachment force. The relationship between the force and displacement of the vesicle is investigated as a function of the substrate shape. It is shown that both the force– displacement relationship and the maximum force at pull-off are significantly dependent on the substrate shape. The results suggest that probes with different tip shapes may be designed for cell manipulation. For example, we demonstrate that a vesicle can be pulled off a flat surface using a probe with a curved tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson K.L., Kendall K., Roberts A.D. (1971) Surface energy and contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313

    Google Scholar 

  2. Derjaguin B.V., Muller V.M., Topovov Y.P. (1975) Effect of contact deformations on adhesion and particles. J. Colloid Interface Sci. 53, 314–326

    Article  Google Scholar 

  3. Maugis D. (1992) Adhesion of spheres – The JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269

    Article  Google Scholar 

  4. Chen S.H., Gao H. (2006) Adhesive contact of an elastic cylinder on stretched substrate. Proc. R. Soc. Lond. A 462, 211–228

    MathSciNet  MATH  Google Scholar 

  5. Chu Y.S., Dufour S., Thiery J.P., Perez E., Pincet F. (2005) Johnson-Kendall-Roberts theory applied to living cells. Phys. Rev. Lett. 94: 028102-1–028102-4

    Article  Google Scholar 

  6. Gao H., Shi W., Freund L.B. (2005) Mechanics of receptor- mediated endocytosis. Proc. Nat. Acad. Sci. 102: 9469–9474

    Article  Google Scholar 

  7. Zhu C., Bao G., Wang N. (2000) Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2, 189–226

    Article  MATH  Google Scholar 

  8. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. (2002) Molecular Biology of the Cell. Garland Science, New York

    Google Scholar 

  9. Lipowsky R. (1998) Vesicles and biomembranes. In: Trigg F.L. (eds) Encyclopedia of Applied Physics. WCH Publishers, Weiheim and New York, pp. 199–222

    Google Scholar 

  10. Canham P.B. (1970) Minimum energy of bending as a possible explanation of biconcave shape of human red blood cell. J. Theor. Biol. 26, 61–81

    Article  Google Scholar 

  11. Helfrich W. (1973) Elastic properties of lipid bilayers – theory and possible experiments. Z. Naturforsch. C 28, 693–703

    Google Scholar 

  12. Freund L.B., Lin Y. (2004) The role of binder mobility in spontaneous adhesive contact and implications for cell adhesion. J. Mech. Phys. Solids 52: 2455–2472

    Article  MATH  Google Scholar 

  13. Bell G.I. (1978) Models for the specific adhesion of cells to cells. Science 200, 618–627

    Article  Google Scholar 

  14. Bell G.I., Dembo M., Bongrand P. (1984) Cell adhesion: competition between nonspecific repulsion and specific bonding. Biophys. J. 45: 1051–1064

    Google Scholar 

  15. Dembo M., Torney D.C., Saxman K., Hammer D. (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B 234, 55–83

    Article  Google Scholar 

  16. Boulbitch A., Guttenberg Z., Sackmann E. (2001) Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system. Biophys. J. 81: 2743–2751

    Google Scholar 

  17. Brochard-Wyart F., de Gennes P.G. (2002) Adhesion induced by mobile binders: dynamics. Proc. Natl. Acad. Sci. USA 99, 854–859

    Article  Google Scholar 

  18. Seifert U., Lipowsky R. (1990) Adhesion of vesicles. Phys. Rev. A 42: 4768–4771

    Article  Google Scholar 

  19. Lipowsky R. (1991) The conformation of membranes. Nature 349, 475–481

    Article  Google Scholar 

  20. Seifert U. (1991) Adhesion of vesicles in two dimensions. Phys. Rev. A 43: 6803–6814

    Article  MathSciNet  Google Scholar 

  21. Seifert U. (1997) Configurations of fluid membranes and vesicles. Adv. Phys. 46, 13–137

    Article  Google Scholar 

  22. Seifert U. (1999) Hydrodynamic lift on bound vesicles. Phys. Rev. Lett. 83, 876–879

    Article  Google Scholar 

  23. Boulbitch A. (2002) Enforced unbinding of bead adhering to a biomembrane by generic force. Europhys. Lett. 59, 910–915

    Article  Google Scholar 

  24. Boulbitch A. (2003) Enforced unbinding of biomembranes whose mutual adhesion is ediated by a specific interaction. Eur. Biophys. J. Biophys. Lett. 31, 637–642

    Google Scholar 

  25. Pierrat S., Brochard-Wyart F., Nassop P. (2004) Enforced detachment of red blood cells adhering to a surface: static and dynamics. Biophys. J. 87: 2855–2869

    Article  Google Scholar 

  26. Smith A.S., Sackmann E., Seifert U. (2003) Effects of a pulling force on the shape of a bound vesicle. Europhys. Lett. 64, 281–287

    Article  Google Scholar 

  27. Smith A.S., Sackmann E., Seifert U. (2004) Pulling tethers from adhered vesicles. Phys. Rev. Lett. 92: 208101-1–208101-4

    Article  Google Scholar 

  28. Guttenberg Z., Bausch A.R., Hu B., Bruinsma R., Moroder L., Sackmann E. (2000) Measuring ligand-receptor unbinding forces with magnetic beads: Molecular leverage. Langmuir 14: 8984–8993

    Article  Google Scholar 

  29. Spolenak R., Gorb S., Gao H., Arzt E. (2005) Effects for contact shape on the scaling biological attachments. Proc. R. Soc. Lond. A, 461, 305–319

    Article  Google Scholar 

  30. Gao H., Yao H. (2004) Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc. Natl. Acad. Sci. USA 101: 7851–7856

    Article  Google Scholar 

  31. Ou-Yang Z.C., Helfrich W.(1987) Instability and deformation of a spherical vesicle by pressure. Phys. Rev. Lett. 59: 2486–2488

    Article  Google Scholar 

  32. Ou-Yang Z.C., Helfrich W. (1989) Bending energy of vesicle membranes: general expressions for the first, second and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39: 5280–5288

    Article  Google Scholar 

  33. Julicher F., Lipowsky R. (1996) Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53: 2670–2683

    Article  Google Scholar 

  34. Pierres A., Benoliel A.M., Bongrand P. (2002) Cell fitting to adhesive surfaces: a prerequisite to firm attachment and subsequent events. Eur. Cells Mater. 3, 31–45

    Google Scholar 

  35. Evans E., Yeung A. (1994) Hidden dynamics in rapid changes of bilayer shape. Chem. Phys. Lipids 73, 39–56

    Article  Google Scholar 

  36. Evans E., Bowman H., Leung A., Needham D., Tirrell D. (1996) Biomembrane templates for nanoscale conduits and networks. Science 273, 933–935

    Article  Google Scholar 

  37. Heinrich V., Bozic B., Svetina S., Zeks B. (1999) Vesicle deformation by an axial load: from elongated shapes to tether vesicles. Biophys. J. 76: 2056–2071

    Article  Google Scholar 

  38. Derenyi I., Julicher F., Prost J. (2002) Formation and interaction of membrane tubes. Phys. Rev. Lett. 88: 238101-1–238101-4

    Article  Google Scholar 

  39. Powers T.R., Huber G., Goldstein R.E. (2002) Fluid-membrane tethers: minimal surfaces and elastic boundary layers. Phys. Rev. E 65: 041901-1–041901-11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Qiao Feng or Huajian Gao.

Additional information

The project supported by the National Natural Science Foundation of China (10525210 and 10121202) and the 973 Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W., Feng, X.Q. & Gao, H. Two-dimensional model of vesicle adhesion on curved substrates. Acta Mech Sin 22, 529–535 (2006). https://doi.org/10.1007/s10409-006-0036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-006-0036-3

Keywords

Navigation