Skip to main content
Log in

Analysis of Lattices with Non-linear Interphases

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Anti-plane deformation of square lattices containing interphases is analyzed. It is assumed that lattices are linear elastic but not necessarily isotropic, whereas interphases exhibit non-linear elastic behavior. It is demonstrated that such problems can be treated effectively using Green’s functions, which allow to eliminate the degrees of freedom outside of the interphase. Illustrative numerical examples focus on the determination of applied stresses leading to lattice instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goland M., Reissner E. (1944). The stresses in cemented joints. J. Appl. Mech. 11:A17–A27

    Google Scholar 

  2. Jones J.P., Whittier J.S. (1967). Waves at a flexibly bonded interface. J. Appl. Mech. 34:905–909

    Google Scholar 

  3. Needleman A. (1990). An analysis of tensile decohesion along an interface. JMPS 38(3):289–324

    Article  Google Scholar 

  4. Klarbring A., Movchan A. (1998). Asymptotic modeling of adhesive joints. Mech. Mater. 28(1–4):137-145

    Article  Google Scholar 

  5. Benveniste Y., Miloh T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33(6):309–323

    Article  Google Scholar 

  6. Bigoni D., Movchan A. (2002). Statics and dynamics of structural interfaces in elasticity. IJSS 39(19):4843–4865

    MATH  Google Scholar 

  7. Peierls R. (1940). The size of a dislocation. Proc. Phys. Soc. 52:34–37

    Article  Google Scholar 

  8. Nabarro F.R.N. (1947). Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59:256–272

    Article  Google Scholar 

  9. Hirth J.P., Lothe J. (1968). Theory of Dislocations. McGraw-Hill, New York

    Google Scholar 

  10. Movchan A.B., Bullough R., Willis J.R. (1998). Stability of a dislocation: Discrete model. Euro. J. Appl. Math. 9:373–396

    Article  MATH  Google Scholar 

  11. Movchan A.B., Bullough R., Willis J.R. (2003). Two-dimensional lattice models of the Peierls type. Philos. Mag. 83(5):569–587

    Article  Google Scholar 

  12. Frenkel J., Kontorova T. (1938). On the theory of plastic deformation and twinning. J. Phys. USSR 13:1–10

    MATH  Google Scholar 

  13. Braun, O.M., Kivshar, Y.S.: The Frenkel–Kontorova model: concepts, methods, and applications. Springer, Berlin Heidelberg New York

  14. Dudarev S.L. (2003). Coherent motion of interstitial defects in a crystalline material. Philos. Mag. 83(31–34):3577–3597

    Article  Google Scholar 

  15. Eshelby J.D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A, 241:376–396

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Haq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haq, S., Movchan, A.B. & Rodin, G.J. Analysis of Lattices with Non-linear Interphases. Acta Mech Mech Sinica 22, 323–330 (2006). https://doi.org/10.1007/s10409-006-0008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-006-0008-7

Keywords

Navigation