Skip to main content
Log in

Extension of the gurson model accounting for the void size effect

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract.

A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the void volume fraction f, the intrinsic material length l becomes a parameter representing voids since the void size comes into play in the Gurson model. Approximate yield functions in analytic forms are suggested for both solids with cylindrical microvoids and with spherical microvoids. The application to uniaxial tension curves shows a precise agreement between the approximate analytic yield function and the “exact” parametric form of integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rice, J.R., Tracey, D.M.: On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids, 17, 201–217 (1969)

    Google Scholar 

  2. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol, 99, 2–15 (1977)

    Google Scholar 

  3. Tvergaard, V.: Material failure by void growth to coalescence. Adv Appl Mech, 27, 83–147 (1990)

    Google Scholar 

  4. Schlueter, N., Grimpe, F., Bleck, W. et al.: Modeling of the damage in ductile steels. Comp Mater Sci, 7, 27–33 (1996)

    Google Scholar 

  5. Khraishi, T.A., Khaleel, M.A., Zbib, H.M.: Parametric-experimental study of void growth in superplastic deformation. Int J Plasticity, 17, 297–315 (2001)

    Google Scholar 

  6. Fond, C., Lobbrecht, A., Schirrer, R.: Polymers toughened with rubber microspheres: An analytical solution for stresses and strains in the rubber particles at equilibrium and rupture. Int J Fracture, 77, 141–159 (1996)

    Google Scholar 

  7. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. In: Hutchinson JW and Wu TY eds. Advances in Applied Mechanics, New York: Academic Press, 33, 295–361 (1997)

  8. Shu, J.Y.: Scale-dependent deformation of porous single crystals. Int J Plasticity, 14: 1085–1107 (1998)

    Google Scholar 

  9. Huo, B., Zheng, Q.S., Huang, Y.: A note on the effect of surface energy and void size to void growth. Euro J Mech -A/Solids, 18, 987–994 (1999)

    Google Scholar 

  10. Zhang, K.S., Bai, J.B., Francois, D.: Ductile fracture of materials with high void volume fraction. Int J Solids Struct, 36, 3407–3425 (1999)

    Google Scholar 

  11. Zhang, S., Hsia, K.J.: Modeling the fracture of a sandwich structure due to cavitation in a ductile adhesive layer. ASME Trans. J Appl Mech, 68, 93–100 (2001)

    Google Scholar 

  12. Liu, B., Qiu, X., Huang, Y., et al.: The size effect on void growth in ductile materials. J Mech Phys Solids, 51, 1171–1187 (2003)

    Google Scholar 

  13. Taylor, G.I.: The mechanism of plastic deformation of crystals. Part I.- theoretical. Proc Roy Soc (London), A145, 362–387 (1934)

    Google Scholar 

  14. Taylor, G.I.: Plastic strain in metals. J Inst Metals, 62, 307–324 1938

    Google Scholar 

  15. Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids, 46, 411–425 (1998)

    Google Scholar 

  16. Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity-I. theory. J Mech Phys Solids, 47, 1239–1263 (1999)

    Google Scholar 

  17. Huang, Y., Gao, H., Nix, W.D., Hutchinson, J.W.: Mechanism-based strain gradient plasticity-II. Analysis. J Mech Phys Solids, 48, 99–128 (2000)

    Google Scholar 

  18. Huang, Y., Xue, Z., Gao, H., Nix, W.D., Xia, Z.C.: A study of micro-indentation hardness tests by mechanism-based strain gradient plasticity. J Mater Res, 15, 1786–1796 (2000)

    Google Scholar 

  19. Hwang, K.C., Jiang, H., Huang, Y., Gao, H., Hu, N.: A finite deformation theory of strain gradient plasticity. J Mech Phys Solids, 50, 81–99 (2002)

    Google Scholar 

  20. Hwang, K.C., Jiang, H., Huang, Y., Gao, H.: Finite deformation analysis of mechanism-based strain gradient plasticity: torsion and crack tip field. Int J Plasticity, 19, 235–251 (2003)

    Google Scholar 

  21. Qiu, X., Huang, Y., Nix, W.D. et al.: Effect of intrinsic lattice resistance in strain gradient plasticity. Acta Mater, 49, 3949–3958 (2001)

    Google Scholar 

  22. Qiu, X., Huang, Y., Wei, Y., et al.: The flow theory of mechanism-based strain gradient plasticity. Mech Mater, 35, 245–258 (2003)

    Google Scholar 

  23. Fleck, N.A., Muller, G.M., Ashby, M.F., et al.: Strain gradient plasticity: theory and experiment. Acta Metall Mater, 42, 475–487 (1994)

    Google Scholar 

  24. Gao, H., Huang, Y., Nix, W.D.: Modeling plasticity at the micrometer scale. Naturwissenschaften, 86, 507–515 (1999)

    Google Scholar 

  25. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater, 46, 5109–5115 (1998)

    Google Scholar 

  26. Shrotriya, P., Allameh, S.M., Lou, J., et al.: On the measurement of the plasticity length scale parameter in LIGA nickel foils. Mech Mater, 35, 233–243 (2003)

    Google Scholar 

  27. Haque, M.A., Saif, M.T.A.: Strain gradient effect in nanoscale thin films. Acta Mater, 51, 3053–3061 (2003)

    Google Scholar 

  28. Stelmashenko, N.A., Walls, M.G., Brown, L.M., et al.: Microindentation on W and Mo oriented single crystals: an STM study. Acta Metall Mater, 41, 2855–2865 (1993)

    Google Scholar 

  29. McElhaney, K.W., Vlassak, J.J., Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res, 13, 1300–1306 (1998)

    Google Scholar 

  30. Saha, R., Xue, Z.Y., Huang, Y., et al.: Indentation of a soft metal film on a hard substrate: strain gradient hardening effects. J Mech Phys Solids, 49, 1997–2014 (2001)

    Google Scholar 

  31. Lloyd, D.J.: Particle reinforced aluminum and magnesium matrix composites. Int Mater Rev, 39, 1–23 (1994)

    Google Scholar 

  32. Xue, Z., Saif, T.M.A., Huang, Y.: The strain gradient effect in micro-electro-mechanical systems (MEMS). J Microelectromechanical Systems, 11, 27–35 (2002)

    Google Scholar 

  33. Douglass, M.R.: Lifetime estimates and unique failure mechanisms of the digital micromirror device (MDM). In: Annual Proceedings-Reliability Physics Symposium (Sponsored by IEEE), Mar 31-Apr 2, 9–16 (1998)

  34. Xue, Z., Saif, T.M.A., Huang, Y.: The strain gradient effect in micro-electro-mechanical systems (MEMS). J Microelectromechanical Systems, 11, 27–35 (2002)

    Google Scholar 

  35. Jiang, H., Huang, Y., Zhuang, Z., et al.: Fracture in mechanism-based strain gradient plasticity. J Mech Phys Solids, 49, 979–993 (2001)

    Google Scholar 

  36. Wen, J., Huang, Y., Hwang, K.C., et al.: The modified Gurson model accounting for the void size effect. Int J Plasticity, 21(2), 381–395 (2005)

    Google Scholar 

  37. Hill, R.: The Mathematical Theory of Plasticity. Oxford: Clarendon Press, 1950

  38. Wiedersich, H.: Hardening mechanisms and the theory of deformation. J Metals, 16, 425–430 (1964)

    Google Scholar 

  39. Bishop, J.F.W., Hill, R.: A theory of plastic distortion of a polycrystalline aggregate under combined stresses. Phil Mag, 42, 414–427 (1951)

    Google Scholar 

  40. Bishop, J.F.W., Hill, R.: A theoretical derivation of the plastic properties of a polycrystalline face-centered metal. Phil Mag, 42, 1298–1307 (1951)

    Google Scholar 

  41. Kocks, U.F.: The relation between polycrystal deformation and single crystal deformation. Metall Trans, 1, 1121–1144 (1970)

    Google Scholar 

  42. Ashby, M.F.: The deformation of plastically non-homogeneous alloys. Phil Mag, 21, 399–424 (1970)

    Google Scholar 

  43. Arsenlis, A., Parks, D.M.: Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater, 47, 1957–1611 (1999)

    Google Scholar 

  44. Shi, M., Huang, Y., Gao, H.: The J-integral and geometrically necessary dislocations in nonuniform plastic deformation. Int J Plasticity, 20(8–9), 1739–1762 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keh-Chih Hwang.

Additional information

The project supported by the National Natural Science Foundation of China (20020003023) and the Ministry of Education (key grant 0306)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, J., Hwang, KC. & Huang, Y. Extension of the gurson model accounting for the void size effect. ACTA MECH SINICA 21, 142–150 (2005). https://doi.org/10.1007/s10409-005-0014-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-005-0014-1

Keywords

Navigation