A smart microfluidic-based fish farm for zebrafish screening

Abstract

Advances in microfluidics for zebrafish processing are critical to facilitate the bioassay in new drug development. Still, a manipulation platform for zebrafish relies mainly on the “static” agarose material and is coupled with the conventional fish facility to ensure the time-history investigation with the homogenous zebrafish population for drug screening. A fully automated IoT (Internet of Things) microfluidics system is necessary to be developed to enable smart and high-speed zebrafish testing without the need for fish facility support. In this work, a smart microfluidic device was presented to enable (i) highly efficient temperature control with the precision of ± 0.1 °C, (ii) remote zebrafish transport through light patterning, and (iii) perfusion and dynamic culturing of zebrafish all together assembled for on-chip high-quality imaging. A new microscale manipulation is envisaged to initiate a new chapter of running bioassays.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326. https://doi.org/10.1126/science.1060701

    Article  Google Scholar 

  2. Asnani A, Peterson RT (2014) The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Models Mech 7:763–767

    Article  Google Scholar 

  3. Blaser RE, Chadwick L, McGinnis GC (2010) Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res 208:56–62. https://doi.org/10.1016/j.bbr.2009.11.009

    Article  Google Scholar 

  4. Brockerhoff SE (2006) Measuring the optokinetic response of zebrafish larvae. Nat Protoc 1:2448–2451. https://doi.org/10.1038/nprot.2006.255

    Article  Google Scholar 

  5. Chang TY, Pardo-Martin C, Allalou A, Wahlby C, Yanik MF (2012) Fully automated cellular-resolution vertebrate screening platform with parallel animal processing. Lab Chip 12:711–716

    Article  Google Scholar 

  6. Chen C-Y, Chang Chien T-C, Mani K, Tsai H-Y (2016) Axial orientation control of zebrafish larvae using artificial cilia. Microfluid Nanofluid 20:12. https://doi.org/10.1007/s10404-015-1668-z

    Article  Google Scholar 

  7. Chen C-Y, Chen C-Y, Lin C-Y, Hu Y-T (2013) Magnetically actuated artificial cilia for optimum mixing performance in microfluidics. Lab Chip 13:2834–2839

    Article  Google Scholar 

  8. Condon CH, Chenoweth SF, Wilson RS (2010) Zebrafish take their cue from temperature but not photoperiod for the seasonal plasticity of thermal performance. J Exp Biol 213:3705–3709. https://doi.org/10.1242/jeb.046979

    Article  Google Scholar 

  9. Cortemeglia C, Beitinger TL (2005) Temperature tolerances of wild-type and red transgenic zebra danios. Trans Am Fish Soc 134:1431–1437. https://doi.org/10.1577/T04-197.1

    Article  Google Scholar 

  10. Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10:252–256

    Article  Google Scholar 

  11. Emran F, Rihel J, Dowling JE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp 923. https://doi.org/10.3791/923

  12. Engeszer RE, Patterson LB, Rao AA, Parichy DM (2007) Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4:21–40. https://doi.org/10.1089/zeb.2006.9997

    Article  Google Scholar 

  13. Harper C, Lawrence C (2010) The laboratory Zebrafish. CRC Press, Boca Raton, p 274

    Google Scholar 

  14. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310. https://doi.org/10.1002/aja.1002030302

    Article  Google Scholar 

  15. Lawrence C (2007) The husbandry of zebrafish (Danio rerio): a review. Aquaculture 269:1–20. https://doi.org/10.1016/j.aquaculture.2007.04.077

    Article  Google Scholar 

  16. Li Y et al (2014) Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity. PLoS ONE 9:e94792. https://doi.org/10.1371/journal.pone.0094792

    Article  Google Scholar 

  17. Lin X et al (2015) High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates. Lab Chip 15:680–689

    Article  Google Scholar 

  18. Mani K, Chang Chien T-C, Panigrahi B, Chen C-Y (2016) Manipulation of zebrafish’s orientation using artificial cilia in a microchannel with actively adaptive wall design. Sci Rep 6:36385

    Article  Google Scholar 

  19. Mani K, Hsieh Y-C, Panigrahi B, Chen C-Y (2018) A noninvasive light driven technique integrated microfluidics for zebrafish larvae transportation. Biomicrofluidics 12:021101–021101

    Article  Google Scholar 

  20. Marks C, West TN, Bagatto B, Moore FBG (2005) Developmental Environment Alters Conditional Aggression in Zebrafish. Copeia 2005:901–908. https://doi.org/10.1643/0045-8511(2005)005[0901:DEACAI]2.0.CO;2

    Article  Google Scholar 

  21. Neuhauss SC (2003) Behavioral genetic approaches to visual system development and function in zebrafish. Dev Neurobiol 54:148–160

    Article  Google Scholar 

  22. Panigrahi B, Chen C-Y (2019a) microfludic transportation control of larval zebrafish throgh optomotor regulations under the pressuredriven flow. Micromachines 10(12):880

    Article  Google Scholar 

  23. Panigrahi B, Chen C-Y (2019b) Microfluidic retention of progressively motile zebrafish sperms. Lab Chip 19:4033–4042. https://doi.org/10.1039/C9LC00534J

    Article  Google Scholar 

  24. Ruiz-Oliveira J, Silva PF, Luchiari AC (2019) Coffee time: low caffeine dose promotes attention and focus in zebrafish. Learn Behav 47:227–233. https://doi.org/10.3758/s13420-018-0369-3

    Article  Google Scholar 

  25. Sawant MS, Zhang S, Li L (2011) Effect of salinity on development of zebrafish, Brachydanio rerio. Res Commun 81

  26. Schaefer JF, Ryan A (2006) Developmental plasticity in the thermal tolerance of zebrafish Danio rerio. J Fish Biol 69:722–734. https://doi.org/10.1111/j.1095-8649.2006.01145.x

    Article  Google Scholar 

  27. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  Google Scholar 

  28. Schmitt EA, Dowling JE (1999) Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol 404:515–536

    Article  Google Scholar 

  29. Scott GR, Johnston IA (2012) Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. Proc Natl Acad Sci 109:14247. https://doi.org/10.1073/pnas.1205012109

    Article  Google Scholar 

  30. Son SU, Garrell RL (2009) Transport of live yeast and zebrafish embryo on a droplet (“digital”) microfluidic platform. Lab Chip 9:2398–2401. https://doi.org/10.1039/B906257B

    Article  Google Scholar 

  31. Steele WB, Mole RA, Brooks BW (2018) Experimental protocol for examining behavioral response profiles in larval fish: application to the neuro-stimulant caffeine. J Vis Exp. https://doi.org/10.3791/57938

    Article  Google Scholar 

  32. Stewart A et al (2011) Zebrafish models to study drug abuse-related phenotypes. Rev Neurosci 22:95–105. https://doi.org/10.1515/RNS.2011.011

    Article  Google Scholar 

  33. Vestergaard P (2008) Skeletal effects of central nervous system active drugs: anxiolytics, sedatives, antidepressants, lithium and neuroleptics. Curr Drug Saf 3:185–189. https://doi.org/10.2174/157488608785699432

    Article  Google Scholar 

  34. Via S, Lande R (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39:505–522. https://doi.org/10.1111/j.1558-5646.1985.tb00391.x

    Article  Google Scholar 

  35. Villamizar N, Vera LM, Foulkes NS, Sánchez-Vázquez FJ (2014) Effect of lighting conditions on zebrafish growth and development. Zebrafish 11:173–181. https://doi.org/10.1089/zeb.2013.0926

    Article  Google Scholar 

  36. Wielhouwer EM et al (2011) Zebrafish embryo development in a microfluidic flow-through system. Lab Chip 11:1815–1824. https://doi.org/10.1039/C0LC00443J

    Article  Google Scholar 

  37. Wolf S et al (2017) Sensorimotor computation underlying phototaxis in zebrafish. Nat Commun 8:651

    Article  Google Scholar 

  38. Yang F, Gao C, Wang P, Zhang G-J, Chen Z (2016) Fish-on-a-chip: microfluidics for zebrafish research. Lab Chip 16:1106–1125. https://doi.org/10.1039/C6LC00044D

    Article  Google Scholar 

  39. Zhang Q, Kopp M, Babiak I, Fernandes JMO (2018) Low incubation temperature during early development negatively affects survival and related innate immune processes in zebrafish larvae exposed to lipopolysaccharide. Sci Rep 8:4142. https://doi.org/10.1038/s41598-018-22288-8

    Article  Google Scholar 

  40. Zheng C, Zhou H, Liu X, Pang Y, Zhang B, Huang Y (2014) Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos. Chem Commun 50:981–984. https://doi.org/10.1039/C3CC47285J

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported through the Ministry of Science and Technology of Taiwan under Contract No. MOST 108-2221-E-006-221-MY4 (to Chia-Yuan Chen). This work would not be possible without the facility provided by Center for Micro/Nano Science and Technology, National Cheng Kung University. This research was supported in part by the Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chia-Yuan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mani, K., Chen, CY. A smart microfluidic-based fish farm for zebrafish screening. Microfluid Nanofluid 25, 22 (2021). https://doi.org/10.1007/s10404-021-02423-0

Download citation

Keywords

  • Microfluidics
  • Internet of things
  • Fish on a chip
  • Zebrafish
  • Automated drug screening