Dynamics of spark cavitation bubbles in a microchamber

Abstract

In recent years, more and more actuators based on cavitation bubbles are developed for microfluidic chips to implement various functions, such as sorting cells and mixing the flows. However, the dynamic properties of cavitation bubbles in microfluidic chips have not been systematically studied. Using voltage-controlled sparks to trigger cavitation bubbles in a microfluidic chamber, this work studies the relationship between the bubble size and the input energy, the effect of the aqueous solution conductivity on the bubble size, the repeated spark actions, and the necessity of the buffer flow to keep the repeated cavitation steady. The findings in this work reveal how to generate individual cavitation bubble inside microfluidic chips in a controllable way, which can contribute to creating new microfluidic actuators driven by cavitation bubbles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Berrospe-Rodriguez C et al (2016) Continuous-wave laser generated jets for needle free applications. Biomicrofluidics 10(1):1932–1058. https://doi.org/10.1063/1.4940038

    Article  Google Scholar 

  2. Bhattacharyya B, Doloi BN, Sorkhel SK (1999) Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. J Mater Process Technol 95(1–3):145–154

    Article  Google Scholar 

  3. Chahine G et al (1995) Spark-generated bubbles as laboratory-scale models of underwater explosions and their use for validation of simulation tools. In: SAVIAC proceedings of the 66th shock and vibrations symposium

  4. Chen Y et al (2013) 3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter. Analyst 138(24):7308–7315

    Article  Google Scholar 

  5. Cook JA (1993) Interaction of multiple spark-generated bubbles in a compressible liquid. Texas Univ at Austin Applied Research Labs, Austin

    Google Scholar 

  6. De WK et al (2017) Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting. Lab Chip 17(7):1287–1296

    Article  Google Scholar 

  7. Dhanik S, Joshi SS (2005) Modeling of a single resistance capacitance pulse discharge in micro-electro discharge machining. J Manufact Sci Eng Trans ASME 127(4):759–767

    Article  Google Scholar 

  8. Dijkink R, Ohl CD (2008) Laser-induced cavitation based micropump. Lab Chip 8(10):1676–1681

    Article  Google Scholar 

  9. Dong ZY et al (2017) Mixing and Residence Time Distribution in Ultrasonic Microreactors. AIChE J 63(4):1404–1418

    Article  Google Scholar 

  10. Falcucci G et al (2013) Direct numerical evidence of stress-induced cavitation. J Fluid Mech 728:362–375

    Article  Google Scholar 

  11. Fong SW et al (2009) Interactions of multiple spark-generated bubbles with phase differences. Exp Fluids 46(4):705–724

    Article  Google Scholar 

  12. Gao Y et al (2020) Acoustic bubble-based bidirectional micropump. Microfluid Nanofluid 24(4):10

    Article  Google Scholar 

  13. Gonzalez-Avila SR et al (2011) Cavitation bubble dynamics in a liquid gap of variable height. J Fluid Mech 682:241–260

    Article  Google Scholar 

  14. Hashmi A et al (2012) Oscillating bubbles: a versatile tool for lab on a chip applications. Lab Chip 12(21):4216–4227

    Article  Google Scholar 

  15. Iino T et al (2019) High-speed microparticle isolation unlimited by Poisson statistics. Lab Chip 19(16):2669–2677

    Article  Google Scholar 

  16. Le Gac S et al (2007) Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement. Lab Chip 7(12):1666–1672

    Article  Google Scholar 

  17. Leighton TG (2011) The inertial terms in equations of motion for bubbles in tubular vessels or between plates. J Acoust Soc Am 130(5):3333–3338

    Article  Google Scholar 

  18. Li ZG et al (2013) Single cell membrane poration by bubble-induced microjets in a microfluidic chip dagger. Lab Chip 13(6):1144–1150

    Article  Google Scholar 

  19. Lohse D et al (2004) Impact on soft sand: void collapse and jet formation. Phys Rev Lett 93(19):4

    Article  Google Scholar 

  20. Marmottant P, Hilgenfeldt S (2003) Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423(6936):153–156

    Article  Google Scholar 

  21. Medrano M et al (2011) Hydrodynamic cavitation in microsystems. I. Experiments with deionized water and nanofluids. Phys Fluids 23(12):13

    Article  Google Scholar 

  22. Meng L et al (2020) Microbubble enhanced acoustic tweezers for size-independent cell sorting. Appl Phys Lett 116(7):5

    Article  Google Scholar 

  23. Nguyen MD, Rahman M, Wong YS (2012) An experimental study on micro-EDM in low-resistivity deionized water using short voltage pulses. Int J Adv Manuf Technol 58(5–8):533–544

    Article  Google Scholar 

  24. Ogunyinka O et al (2020) An integrated microfluidic chip for generation and transfer of reactive species using gas plasma. Microfluid Nanofluid 24(2):16

    Article  Google Scholar 

  25. Ohl SW, Ohl CD (2016) Acoustic cavitation in a microchannel. Springer, Singapore, pp 99–135

    Google Scholar 

  26. Orbay S et al (2017) Mixing high-viscosity fluids via acoustically driven bubbles. J Micromech Microeng 27(1):6

    Article  Google Scholar 

  27. Ozcelik A et al (2014) An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls. Anal Chem 86(10):5083–5088

    Article  Google Scholar 

  28. Plesset MS, Zwick SA (1954) The growth of vapor bubbles in superheated liquids. J Appl Phys 25(4):493–500

    MathSciNet  Article  Google Scholar 

  29. Quinto-Su PA, Lim KY, Ohl CD (2009) Cavitation bubble dynamics in microfluidic gaps of variable height. Phys Rev E 80(4):4

    Article  Google Scholar 

  30. Quinto-Su PA et al (2010) Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. PHYS Rev Lett 104(1):4

    Article  Google Scholar 

  31. Roberts RM et al (1996) The energy partition of underwater sparks. J Acoust Soc Am 99(6):3465–3475

    Article  Google Scholar 

  32. Shan ML et al (2019) Electric characteristic and cavitation bubble dynamics using underwater pulsed discharge. Plasma Sci Technol 21(7):7

    Article  Google Scholar 

  33. Shang LR et al (2016) Osmotic pressure-triggered cavitation in microcapsules. Lab Chip 16(2):251–255

    Article  Google Scholar 

  34. Shchukin DG et al (2011) Ultrasonic Cavitation at Solid Surfaces. Adv Mater 23(17):1922–1934

    Article  Google Scholar 

  35. Surdo S, Diaspro A, Duocastella M (2017) Micromixing with spark-generated cavitation bubbles. Microfluid Nanofluidics 21(5):82

    Article  Google Scholar 

  36. Tagawa Y et al (2012) Highly Focused Supersonic Microjets. Physical Review X 2(3):10

    Article  Google Scholar 

  37. Tandiono T et al (2010) Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves. Lab Chip 10(14):1848–1855

    Article  Google Scholar 

  38. Wu TH et al (2012) Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter. Lab Chip 12(7):1378–1383

    Article  Google Scholar 

  39. Yuan H, Oguz HN, Prosperetti A (1999) Growth and collapse of a vapor bubble in a small tube. Int J Heat Mass Transf 42(19):3643–3657

    Article  Google Scholar 

  40. Zhang K et al (2011) Laser-induced thermal bubbles for microfluidic applications. Lab Chip 11(7):1389–1395

    Article  Google Scholar 

  41. Zhao J, You Z (2018) Spark-generated microbubble cell sorter for microfluidic flow cytometry. Cytometry Part A 93(2):222–231

    Article  Google Scholar 

  42. Zwaan E et al (2007) Controlled cavitation in microfluidic systems. Phys Rev Lett 98(25):4

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Municipal Education Commission and National Natural Science Foundation of China (61727813). Jiao Zeheng wishes to thank Prof. Chen Bingyan from Hohai University and Prof. Attila Tarnok from University of Leipzig for advice on experimental design.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Zhao or Zheng You.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2529 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiao, Z., Zhao, J., Han, Y. et al. Dynamics of spark cavitation bubbles in a microchamber. Microfluid Nanofluid 25, 19 (2021). https://doi.org/10.1007/s10404-021-02422-1

Download citation