Improving plasma bonding of PDMS to gold-patterned glass for electrochemical microfluidic applications

Abstract

Plasma-treated poly(dimethylsiloxane) (PDMS) bonds irreversibly to Si-containing substrates. In electrochemical microfluidic cells, commonly used gold electrodes are inert to this bonding method, causing leaks in the PDMS\(\vert\)Au interface. In this work, the effect of the electrode connector width on the leak was studied. Leak pressure tests show that higher leak pressures can be obtained using narrower electrode connectors. A 4 \(\upmu\)m connector width presents a leak pressure of 238±22 kPa, comparable to the typical failure pressures reported for PDMS\(\vert\)glass devices without electrodes. Finite element modeling suggests that the deformation of the PDMS under the pressure in the channel is the mechanism responsible for the sharp increase in leak resistance observed at narrow gold structures. To ensure that narrow connectors are suitable for faradaic electrochemical measurements, a model analyte was evaluated in cells with different electrode connector width. Voltammograms show that even when using the 4 \(\upmu\)m structure, ohmic drop is negligible. We propose the use of narrow electrode connectors to reliably use the simple and widespread plasma bonding method while minimizing the solution leaking.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  2. Bento Ribeiro LE, Piazzetta MH, Gobbi AL, Costa JS, Fracassi da Silva JA, Fruett F (2010) Fabrication and characterization of an impedance micro-bridge for lab-on-a-chip. ECS Trans 31(1):155–163. https://doi.org/10.1149/1.3474154

    Article  Google Scholar 

  3. Berdichevsky Y, Khandurina J, Guttman A, Lo YH (2004) UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sens Actuators, B 97:402–408. https://doi.org/10.1016/j.snb.2003.09.022

    Article  Google Scholar 

  4. Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597. https://doi.org/10.1016/j.snb.2017.02.109

    Article  Google Scholar 

  5. Casanova-Moreno J, To J, Yang CWT, Turner RFB, Bizzotto D, Cheung KC (2017) Fabricating devices with improved adhesion between PDMS and gold-patterned glass. Sens Actuators, B 246:904–909. https://doi.org/10.1016/j.snb.2017.02.109

    Article  Google Scholar 

  6. Chau K, Millare B, Lin A, Upadhyayula S, Nuñez V, Xu H, Vullev VI (2011) Dependence of the quality of adhesion between poly(dimethylsiloxane) and glass surfaces on the composition of the oxidizing plasma. Microfluid Nanofluid 10(4):907–917. https://doi.org/10.1007/s10404-010-0724-y

    Article  Google Scholar 

  7. Chen IJ, White IM (2011) High-sensitivity electrochemical enzyme-linked assay on a microfluidic interdigitated microelectrode. Biosens Bioelectron 26(11):4375–4381. https://doi.org/10.1016/j.bios.2011.04.044

    Article  Google Scholar 

  8. Choi S, Chae J (2009) A regenerative biosensing surface in microfluidics using electrochemical desorption of short-chain self-assembled monolayer. Microfluid Nanofluid 7(6):819–827. https://doi.org/10.1007/s10404-009-0440-7

    Article  Google Scholar 

  9. Dang K, Morrison DWG, Demirci U, Khademhosseini A (2008) Plasma in Microchannel, Springer US, Boston, MA, pp 1684–1691. https://doi.org/10.1007/978-0-387-48998-8\_1252

  10. Debesset S, Hayden CJ, Dalton C, Eijkel JCT, Manz A (2004) An AC electroosmotic micropump for circular chromatographic applications. Lab Chip 4:396–400. https://doi.org/10.1039/B314123C

    Article  Google Scholar 

  11. Dong H, Li CM, Zhang YF, Cao XD, Gan Y (2007) Screen-printed microfluidic device for electrochemical immunoassay. Lab Chip 7:1752–1758. https://doi.org/10.1039/B712394A

    Article  Google Scholar 

  12. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984. https://doi.org/10.1021/ac980656z

    Article  Google Scholar 

  13. Franssila S (2010) Introduction to microfabrication. Wiley, New York

    Google Scholar 

  14. Heinze J (1993) Ultramicroelectrodes in electrochemistry. Angew Chem Int Ed Engl 32(9):1268–1288. https://doi.org/10.1002/anie.199312681

    Article  Google Scholar 

  15. Hibbeler R, Fan S (2004) Statics and mechanics of materials. Pearson Prentice Hall, New York

    Google Scholar 

  16. Kim M, Lee SY, Choi H, Shin YB, Jung SO, Kim MG, Chung BH (2006) On-chip Escherichia coli culture, purification, and detection of expressed proteins. Eur Biophys J 35(8):655–662. https://doi.org/10.1007/s00249-006-0072-8

    Article  Google Scholar 

  17. Kim TK, Kim JK, Jeong OC (2011) Measurement of nonlinear mechanical properties of PDMS elastomer. Microelectron Eng 88(8):1982–1985. https://doi.org/10.1016/j.mee.2010.12.108

    Article  Google Scholar 

  18. Kjeang E, Djilali N, Sinton D (2009) Microfluidic fuel cells: a review. J Power Sources 186(2):353–369. https://doi.org/10.1016/j.jpowsour.2008.10.011

    Article  Google Scholar 

  19. Kohler S, Weilbeer C, Howitz S, Becker H, Beushausen V, Belder D (2011) PDMS free-flow electrophoresis chips with integrated partitioning bars for bubble segregation. Lab Chip 11:309–314. https://doi.org/10.1039/C0LC00347F

    Article  Google Scholar 

  20. Lau ATH, Yip HM, Ng KCC, Cui X, Lam RHW (2014) Dynamics of microvalve operations in integrated microfluidics. Micromachines 5(1):50–65. https://doi.org/10.3390/mi5010050

    Article  Google Scholar 

  21. Lee D, Xu G, Tay HK, Yang C, Ying JY (2006) Microfluidic device with asymmetric electrodes for cell and reagent delivery. In: Proc. SPIE 6415, Micro- and Nanotechnology: Materials, Processes, Packaging, and Systems III, 64150U, vol 6415. https://doi.org/10.1117/12.695598

  22. Lee K, Fosser K, Nuzzo R (2005) Fabrication of stable metallic patterns embedded in poly(dimethylsiloxane) and model applications in non-planar electronic and lab-on-a-chip device patterning. Adv Funct Mater 15(4):557–566. https://doi.org/10.1002/adfm.200400189

    Article  Google Scholar 

  23. Li X, Klemic KG, Reed MA, Sigworth FJ (2006) Microfluidic system for planar patch clamp electrode arrays. Nano Lett 6(4):815–819. https://doi.org/10.1021/nl060165r

    Article  Google Scholar 

  24. Lim KS, Chang WJ, Koo YM, Bashir R (2006) Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization. Lab Chip 6:578–580. https://doi.org/10.1039/B514755G

    Article  Google Scholar 

  25. Liu KK, Wu RG, Chuang YJ, Khoo HS, Huang SH, Tseng FG (2010) Microfluidic systems for biosensing. Sensors 10(22163570):6623–6661. https://doi.org/10.3390/s100706623

    Article  Google Scholar 

  26. Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, Malki A, Aziz H, Althani A, Hoorfar M (2015) Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. Sensors 15(12):30011–30031. https://doi.org/10.3390/s151229783

    Article  Google Scholar 

  27. Luo C, Yang X, Fu Q, Sun M, Ouyang Q, Chen Y, Ji H (2006) Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation. Electrophoresis 27(10):1977–1983. https://doi.org/10.1002/elps.200500665

    Article  Google Scholar 

  28. Martin RS, Gawron AJ, Lunte SM, Henry CS (2000) Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. Anal Chem 72(14):3196–3202. https://doi.org/10.1021/ac000160t

    Article  Google Scholar 

  29. McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499. https://doi.org/10.1021/ar010110q

    Article  Google Scholar 

  30. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1):27–40. https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C

    Article  Google Scholar 

  31. Miralles V, Huerre A, Malloggi F, Jullien MC (2013) A review of heating and temperature control in microfluidic systems: Techniques and applications. Diagnostics 3(1):33. https://doi.org/10.3390/diagnostics3010033

    Article  Google Scholar 

  32. Moraes FC, Lima RS, Segato TP, Cesarino I, Cetino JLM, Machado SAS, Gomez F, Carrilho E (2012) Glass/PDMS hybrid microfluidic device integrating vertically aligned swcnts to ultrasensitive electrochemical determinations. Lab Chip 12:1959–1962. https://doi.org/10.1039/C2LC40141J

    Article  Google Scholar 

  33. Moreira NH, de Jesus de Almeida AL, de Oliveira Piazzeta MH, de Jesus DP, Deblire A, Gobbi AL, Fracassi da Silva JA (2009) Fabrication of a multichannel PDMS/glass analytical microsystem with integrated electrodes for amperometric detection. Lab Chip 9:115–121. https://doi.org/10.1039/B807409G

    Article  Google Scholar 

  34. Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM (2010) Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10:3163–3169. https://doi.org/10.1039/C0LC00237B

    Article  Google Scholar 

  35. Perdue RK, Laws DR, Hlushkou D, Tallarek U, Crooks RM (2009) Bipolar electrode focusing: The effect of current and electric field on concentration enrichment. Anal Chem 81(24):10149–10155. https://doi.org/10.1021/ac901913r

    Article  Google Scholar 

  36. Rackus DG, Shamsi MH, Wheeler AR (2015) Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev 44:5320–5340. https://doi.org/10.1039/C4CS00369A

    Article  Google Scholar 

  37. Saem S, Zhu Y, Luu H, Moran-Mirabal J (2017) Bench-top fabrication of an all-PDMS microfluidic electrochemical cell sensor integrating micro/nanostructured electrodes. Sensors 17(4):732. https://doi.org/10.3390/s17040732

    Article  Google Scholar 

  38. Sassa F, Morimoto K, Satoh W, Suzuki H (2008) Electrochemical techniques for microfluidic applications. Electrophoresis 29(9):1787–1800. https://doi.org/10.1002/elps.200700581

    Article  Google Scholar 

  39. Satyanarayana S, Karnik RN, Majumdar A (2005) Stamp-and-stick room-temperature bonding technique for microdevices. J Microelectromech Syst 14(2):392–399. https://doi.org/10.1109/JMEMS.2004.839334

    Article  Google Scholar 

  40. Selimovic A, Johnson AS, Kiss IZ, Martin RS (2011) Use of epoxy-embedded electrodes to integrate electrochemical detection with microchip-based analysis systems. Electrophoresis 32(8):822–831. https://doi.org/10.1002/elps.201000665

    Article  Google Scholar 

  41. Shiroma LS, Piazzetta MHO, Duarte-Junior GF, Coltro WKT, Carrilho E, Gobbi AL, Lima RS (2016) Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices. Sci Rep 6:26032. https://doi.org/10.1038/srep26032

    Article  Google Scholar 

  42. Sonney S, Shek N, Moran-Mirabal JM (2015) Rapid bench-top fabrication of poly(dimethylsiloxane)/polystyrene microfluidic devices incorporating high-surface-area sensing electrodes. Biomicrofluidics 9(2):026501. https://doi.org/10.1063/1.4918596

    Article  Google Scholar 

  43. Sreenivasan R, Bassett EK, Cervantes TM, Hoganson DM, Vacanti JP, Gleason KK (2012) Solvent-free surface modification by initiated chemical vapor deposition to render plasma bonding capabilities to surfaces. Microfluid Nanofluid 12(5):835–839. https://doi.org/10.1007/s10404-011-0913-3

    Article  Google Scholar 

  44. Teixeira CA, Giordano GF, Beltrame MB, Vieira LCS, Gobbi AL, Lima RS (2016) Renewable solid electrodes in microfluidics: Recovering the electrochemical activity without treating the surface. Anal Chem 88(22):11199–11206. https://doi.org/10.1021/acs.analchem.6b03453

    Article  Google Scholar 

  45. Temiz Y, Lovchik RD, Kaigala GV, Delamarche E (2015) Lab-on-a-chip devices: How to close and plug the lab? Microelectron Eng 132:156–175. https://doi.org/10.1016/j.mee.2014.10.013

    Article  Google Scholar 

  46. Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6(1):1–16. https://doi.org/10.1007/s10404-008-0361-x

    Article  Google Scholar 

  47. Ueno K, Kim HB, Kitamura N (2003) Characteristic electrochemical responses of polymer microchannel-microelectrode chips. Anal Chem 75(9):2086–2091. https://doi.org/10.1021/ac0264675

    Article  Google Scholar 

  48. Wang Z, Volinsky AA, Gallant ND (2014) Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J Appl Polym Sci 131:22. https://doi.org/10.1002/app.41050

    Article  Google Scholar 

  49. Weng JH, Lai CY, Chen LC (2019) Microfluidic amperometry with two symmetric au microelectrodes under one-way and shuttle flow conditions. Electrochim Acta 297:118–128. https://doi.org/10.1016/j.electacta.2018.11.128

    Article  Google Scholar 

  50. Wu J, Wang R, Yu H, Li G, Xu K, Tien NC, Roberts RC, Li D (2015) Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems. Lab Chip 15:690–695. https://doi.org/10.1039/C4LC01121J

    Article  Google Scholar 

  51. Yang CWT, Martens I, Gyenge EL, Turner RFB, Bizzotto D (2016) Adsorption of a carboxylated silane on gold: characterization for its rational use in hybrid glass/gold substrates. J Phys Chem C 120(5):2675–2683. https://doi.org/10.1021/acs.jpcc.5b09915

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Gerardo Arriaga for providing access to the infrastructure necessary for this project.

Funding

This study was funded by the National Council of Science and Technology of Mexico (CONACYT) through the National Laboratory grants LN-271649 and LN-293442. C.L.G-G. benefited from CONACYT scholarship number 454500.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jannu R. Casanova-Moreno.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1

Supplementary file 2

Supplementary file 3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Gallardo, C.L., Díaz Díaz, A. & Casanova-Moreno, J.R. Improving plasma bonding of PDMS to gold-patterned glass for electrochemical microfluidic applications. Microfluid Nanofluid 25, 20 (2021). https://doi.org/10.1007/s10404-021-02420-3

Download citation

Keywords

  • Polydimethylsiloxane-gold bonding
  • Electrochemical sensor
  • Elastomer deformation
  • Leak
  • Microfluidics