C3PE: counter-current continuous phase extraction for improved precision of in-droplet chemical reactions

Abstract

To improve tools for controlling and optimizing miniaturized chemistry, a novel oil extraction architecture, designated as the Counter-Current Continuous Phase Extraction (C3PE) module, was developed to enable precise control over reaction incubation in water-in-oil droplet microfluidic reactors. Using a symmetric pillar array coupled to adjustable oil flows prevented sample loss and droplet breakup, even at high final volume fractions, and cross-flow added novel stabilization of oil extraction against instability in control pressures. By integrating this dynamic functionality, C3PE enabled rational selection of the oil extraction magnitude across a range of achievable final droplet volume fractions (up to 85%) when processing droplets at 40–200 Hz. Further, this versatile device handled many droplet sizes (70–500 pL demonstrated here). Next, this approach to controlling droplet volume fraction enabled incubation time monitoring and optimization when coupled to a K-channel direct injection feature to label selected droplets. In profiling system characteristics like volume fraction, channel geometry, and continuous phase viscosity, this technique provided a powerful tool to control, measure, and improve incubation performance. Finally, applying C3PE principles to an in-droplet β-galactosidase enzyme reaction (useful in immunoassay systems) increased product formation while significantly decreasing variance in product yield among droplets relative to a non-extracted comparison. We envision that this method will inform future design and implementation of high precision in-droplet chemistry while being of general interest in the study of emulsion fluid dynamics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abate AR, Hung T, Mary P, Agresti JJ, Weitz DA (2010) High-throughput injection with microfluidics using picoinjectors. Proc Natl Acad Sci USA 107:19163–19166. https://doi.org/10.1073/pnas.1006888107

    Article  Google Scholar 

  2. Baret J-C (2012) Surfactants in droplet-based microfluidics. Lab Chip 12:422–433. https://doi.org/10.1039/C1LC20582J

    Article  Google Scholar 

  3. Basu AS (2013) Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters. Lab Chip 13:1892–1901. https://doi.org/10.1039/C3LC50074H

    Article  Google Scholar 

  4. Brouzes E, Kruse T, Kimmerling R, Strey HH (2015) Rapid and continuous magnetic separation in droplet microfluidic devices. Lab Chip 15:908–919. https://doi.org/10.1039/C4LC01327A

    Article  Google Scholar 

  5. Choi N, Lee J, Ko J, Jeon JH, Rhie G-e, deMello AJ, Choo J (2017) Integrated SERS-based microdroplet platform for the automated immunoassay of F1 antigens in yersinia pestis. Anal Chem 89:8413–8420. https://doi.org/10.1021/acs.analchem.7b01822

    Article  Google Scholar 

  6. Chong ZZ, Tor SB, Gañán-Calvo AM, Chong ZJ, Loh NH, Nguyen N-T, Tan SH (2016) Automated droplet measurement (ADM): an enhanced video processing software for rapid droplet measurements. Microfluid Nanofluid 20:66. https://doi.org/10.1007/s10404-016-1722-5

    Article  Google Scholar 

  7. Chung MT, Nunez D, Cai D, Kurabayashi K (2017) Deterministic droplet-based co-encapsulation and pairing of microparticles via active sorting and downstream merging. Lab Chip 17:3664–3671. https://doi.org/10.1039/C7LC00745K

    Article  Google Scholar 

  8. Cochrane WG, Hackler AL, Cavett VJ, Price AK, Paegel BM (2017) Integrated, continuous emulsion creamer. Anal Chem 89:13227–13234. https://doi.org/10.1021/acs.analchem.7b03070

    Article  Google Scholar 

  9. Doonan SR, Bailey RC (2017) K-channel: a multifunctional architecture for dynamically reconfigurable sample processing in droplet microfluidics. Anal Chem 89:4091–4099. https://doi.org/10.1021/acs.analchem.6b05041

    Article  Google Scholar 

  10. Doonan SR, Lin M, Bailey RC (2019) Droplet CAR-wash: continuous picoliter-scale immunocapture and washing. Lab Chip. https://doi.org/10.1039/C9LC00125E

    Article  Google Scholar 

  11. Frenz L, Blank K, Brouzes E, Griffiths AD (2009) Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip 9:1344–1348. https://doi.org/10.1039/B816049J

    Article  Google Scholar 

  12. Gach PC, Iwai K, Kim PW, Hillson NJ, Singh AK (2017) Droplet microfluidics for synthetic biology. Lab Chip 17:3388–3400. https://doi.org/10.1039/C7LC00576H

    Article  Google Scholar 

  13. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6:437–446. https://doi.org/10.1039/B510841A

    Article  Google Scholar 

  14. Haliburton JR, Kim SC, Clark IC, Sperling RA, Weitz DA, Abate AR (2017) Efficient extraction of oil from droplet microfluidic emulsions. Biomicrofluidics 11:034111. https://doi.org/10.1063/1.4984035

    Article  Google Scholar 

  15. Huang H, Yu Y, Hu Y, He X, Berk Usta O, Yarmush ML (2017) Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. Lab Chip 17:1913–1932. https://doi.org/10.1039/C7LC00262A

    Article  Google Scholar 

  16. Huebner A, Bratton D, Whyte G, Yang M, deMello AJ, Abell C, Hollfelder F (2009) Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9:692–698. https://doi.org/10.1039/B813709A

    Article  Google Scholar 

  17. Jayaprakash KS, Banerjee U, Sen AK (2016) Dynamics of aqueous droplets at the interface of coflowing immiscible oils in a microchannel. Langmuir 32:2136–2143. https://doi.org/10.1021/acs.langmuir.5b04116

    Article  Google Scholar 

  18. Kaoui B, Ristow GH, Cantat I, Misbah C, Zimmermann W (2008) Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys Rev E 77:021903. https://doi.org/10.1103/PhysRevE.77.021903

    Article  Google Scholar 

  19. Lan F, Demaree B, Ahmed N, Abate AR (2017) Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat Biotechnol 35:640–646. https://doi.org/10.1038/nbt.3880

    Article  Google Scholar 

  20. Lee M et al (2014) Synchronized reinjection and coalescence of droplets in microfluidics. Lab Chip 14:509–513. https://doi.org/10.1039/C3LC51214B

    Article  Google Scholar 

  21. Li S et al (2013) An on-chip, multichannel droplet sorter using standing surface acoustic waves. Anal Chem 85:5468–5474. https://doi.org/10.1021/ac400548d

    Article  Google Scholar 

  22. Lombardi D, Dittrich PS (2011) Droplet microfluidics with magnetic beads: a new tool to investigate drug–protein interactions. Anal Bioanal Chem 399:347–352. https://doi.org/10.1007/s00216-010-4302-7

    Article  Google Scholar 

  23. Mary P, Abate AR, Agresti JJ, Weitz DA (2011) Controlling droplet incubation using close-packed plug flow. Biomicrofluidics 5:024101. https://doi.org/10.1063/1.3576934

    Article  Google Scholar 

  24. Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8:870–891. https://doi.org/10.1038/nprot.2013.046

    Article  Google Scholar 

  25. Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515–545. https://doi.org/10.1039/C2LC20799K

    Article  Google Scholar 

  26. Rhee M, Light YK, Yilmaz S, Adams PD, Saxena D, Meagher RJ, Singh AK (2014) Pressure stabilizer for reproducible picoinjection in droplet microfluidic systems. Lab Chip 14:4533–4539. https://doi.org/10.1039/C4LC00823E

    Article  Google Scholar 

  27. Sahore V, Doonan SR, Bailey RC (2018) Droplet microfluidics in thermoplastics: device fabrication, droplet generation, and content manipulation using integrated electric and magnetic fields. Anal Methods 10:4264–4274. https://doi.org/10.1039/C8AY01474D

    Article  Google Scholar 

  28. Sciambi A, Abate AR (2014) Generating electric fields in PDMS microfluidic devices with salt water electrodes. Lab Chip 14:2605–2609. https://doi.org/10.1039/C4LC00078A

    Article  Google Scholar 

  29. Shang L, Cheng Y, Zhao Y (2017) Emerging droplet microfluidics. Chem Rev 117:7964–8040. https://doi.org/10.1021/acs.chemrev.6b00848

    Article  Google Scholar 

  30. Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42:768–772. https://doi.org/10.1002/anie.200390203

    Article  Google Scholar 

  31. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026. https://doi.org/10.1103/RevModPhys.77.977

    Article  Google Scholar 

  32. Sun M, Vanapalli SA (2013) Generation of chemical concentration gradients in mobile droplet arrays via fragmentation of long immiscible diluting plugs. Anal Chem 85:2044–2048. https://doi.org/10.1021/ac303526y

    Article  Google Scholar 

  33. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220. https://doi.org/10.1039/B715524G

    Article  Google Scholar 

  34. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166. https://doi.org/10.1103/PhysRevLett.86.4163

    Article  Google Scholar 

  35. Verbruggen B, Leirs K, Puers R, Lammertyn J (2015) Selective DNA extraction with microparticles in segmented flow. Microfluid Nanofluid 18:293–303. https://doi.org/10.1007/s10404-014-1433-8

    Article  Google Scholar 

  36. Xi H-D et al (2017) Active droplet sorting in microfluidics: a review. Lab Chip 17:751–771. https://doi.org/10.1039/C6LC01435F

    Article  Google Scholar 

  37. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575. https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550:AID-ANIE550>3.0.CO;2-G

    Article  Google Scholar 

  38. Xu Y, Lee J-H, Li Z, Wang L, Ordog T, Bailey RC (2018) A droplet microfluidic platform for efficient enzymatic chromatin digestion enables robust determination of nucleosome positioning. Lab Chip 18:2583–2592. https://doi.org/10.1039/C8LC00599K

    Article  Google Scholar 

  39. Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, Mazutis L (2016) Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12:44–73. https://doi.org/10.1038/nprot.2016.154

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Institutes of Health (NIH CA191186). S.R.D. was supported by the National Science Foundation Graduate Research Fellowship Program. M.L. was supported by the Pfizer Undergraduate Summer Research Award (University of Michigan). We also want to thank Prof. Robert Kennedy and Dr. Brian Shay (University of Michigan) for assistance with viscosity measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryan C. Bailey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file2 (AVI 2578 kb)

Supplementary file3 (AVI 1979 kb)

Supplementary file4 (AVI 3976 kb)

Supplementary file5 (AVI 3776 kb)

Supplementary file6 (AVI 3572 kb)

Supplementary file1 (DOCX 517 kb)

Supplementary file2 (AVI 2578 kb)

Supplementary file3 (AVI 1979 kb)

Supplementary file4 (AVI 3976 kb)

Supplementary file5 (AVI 3776 kb)

Supplementary file6 (AVI 3572 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doonan, S.R., Lin, M., Lee, D. et al. C3PE: counter-current continuous phase extraction for improved precision of in-droplet chemical reactions. Microfluid Nanofluid 24, 50 (2020). https://doi.org/10.1007/s10404-020-02354-2

Download citation

Keywords

  • Droplet microfluidics
  • Emulsions
  • Volume fraction