Skip to main content
Log in

Multi-level separation of particles using acoustic radiation force and hydraulic force in a microfluidic chip

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Combined with acoustic separation and hydraulic separation technology, a microfluidic chip, which can achieve multi-level particle separation, is proposed in this work. The chip uses the sheath flow on both sides to align the mixed particles in the set area (near the side of the channel) of the separation channel. And then, the mixed particles successively pass through the acoustic surface wave and hydraulic action area, which are generated by modulating interdigital transducers and adjusting the flow ratio, respectively, and finally realize multiple particle separation under the acoustic radiation and hydraulic force. The corresponding separation experiments were carried out using polystyrene (PS) microparticles with diameters of 1 µm, 5 µm, and 10 µm, respectively. Moreover, we explored the influence of the peak-to-peak voltage (Vpp) and flow ratio on the PS microparticles separation effect, and the separation effect is optimal at the flowrate in the main channel is 4 mm/s, Vpp = 25 V, A1 = 0.2, A2 = 0.5. Under these conditions, the separation purity of 1 µm, 5 µm, and 10 µm PS microparticles are 95.60%, 91.67%, 93.75%, respectively, and their separation rates are 96.67%, 89.19%, and 96.77%, respectively. The combined multi-level separation chip has the advantages of simple structure, high separation accuracy, high separation efficiency, and the ability to sort multiple particles, which can be applied to chemical analysis, cell sorting, biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ai Y, Sanders CK, Marrone BL (2013) Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem 85:9126–9134

    Article  Google Scholar 

  • Chang CB, Huang WX, Lee KH, Sung HJ (2014) Optical separation of ellipsoidal particles in a uniform flow. Phys Fluids 26:062001

    Article  Google Scholar 

  • Chono K, Shimizu N, Matsui Y, Kondoh J, Shiokawa S (2004) Development of novel atomization system based on SAW streaming. Jpn J Appl Phys 43:2987–2991

    Article  Google Scholar 

  • Collins DJ, Alan T, Neild A (2014) Particle separation using virtual deterministic lateral displacement (vDLD). Lab Chip 14:1595–1603

    Article  Google Scholar 

  • Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A (2015) Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 6:8686

    Article  Google Scholar 

  • Destgeer G, Lee KH, Jung JH, Alazzam A, Sung HJ (2013) Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Lab Chip 13:4210–4216

    Article  Google Scholar 

  • Destgeer G, Ha BH, Jung JH, Sung HJ (2014) Submicron separation of microspheres via travelling surface acoustic waves. Lab Chip 14:4665–4672

    Article  Google Scholar 

  • Destgeer G, Ha BH, Park J, Jung JH, Alazzam A, Sung HJ (2015) Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves. Anal Chem 87:4627–4632

    Article  Google Scholar 

  • Destgeer G, Alazzam A, Sung HJ (2016) High frequency travelling surface acoustic waves for microparticle separation. J Mech Sci Technol 30:3945–3952

    Article  Google Scholar 

  • Devendran C, Gunasekara NR, Collins DJ, Neild A (2016) Batch process particle separation using surface acoustic waves (SAW): integration of travelling and standing SAW. RSC Adv 6:5856–5864

    Article  Google Scholar 

  • Dincer C, Kling A, Chatelle C, Armbrecht L, Kieninger J, Weber W, Urban GA (2016) Designed miniaturization of microfluidic biosensor platforms using the stop-flow technique. Analyst 141:6073–6079

    Article  Google Scholar 

  • Ding X, Wang L, Huang TJ (2012) High-efficiency blood cell separation using standing surface acoustic waves. In: Proceedings of the 16th international conference on miniaturized systems for chemistry and life sciences. MicroTAS, pp 539–541

  • Ding XY, Peng ZL, Lin SCS, Geri M, Li SX, Li P, Chen YC, Dao M, Suresh S, Huang TJ (2014) Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci 111:12992–12997

    Article  Google Scholar 

  • Duffy DC, Mcdonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • Fouet M, Mader MA, Iraïn S, Yanha Z, Naillon A, Cargou S, Gue AM, Joseph P (2016) Filter-less submicron hydrodynamic size sorting. Lab Chip 16:720–733

    Article  Google Scholar 

  • Guldiken R, Jo MC, Gallant ND, Demirci U, Zhe J (2012) Sheathless size-based acoustic particle separation. Sensors 12:905–922

    Article  Google Scholar 

  • Hung LH, Wang HL, Yang RJ (2016) A portable sample concentrator on paper-based microfluidic devices. Microfluid Nanofluid 20:80

    Article  Google Scholar 

  • Isiksacan Z, Erel O, Elbuken C (2016) A portable microfluidic system for rapid measurement of the erythrocyte sedimentation rate. Lab Chip 16:4682–4690

    Article  Google Scholar 

  • Jo MC, Guldiken R (2012) Active density-based separation using standing surface acoustic waves. Sens Actuators A Phys 187:22–28

    Article  Google Scholar 

  • Li SX, Ding XY, Mao ZM, Chen YC, Nama N, Guo F, Li P, Wang L, Cameron CE, Huang TJ (2015) Standing surface acoustic wave (SSAW)-based cell washing. Lab Chip 15:331–338

    Article  Google Scholar 

  • Li SX, Ma F, Bachman H, Cameron CE, Zeng XQ, Huang TJ (2017) Acoustofluidic bacteria separation. J Micromech Microeng 27:015031

    Article  Google Scholar 

  • Ma ZC, Collins DJ, Guo JH, Ai Y (2016) Mechanical properties based particle separation via traveling surface acoustic wave. Anal Chem 88:11844–11851

    Article  Google Scholar 

  • Ma ZC, Collins DJ, Ai Y (2017) Single-actuator bandpass microparticle filtration via traveling surface acoustic waves. Colloid Interface Sci Commun 16:6–9

    Article  Google Scholar 

  • Mashaghi S, Abbaspourrad A, Weitz DA, van Oijen AM (2016) Droplet microfluidics: a tool for biology, chemistry and nanotechnology. TrAC Trends Anal Chem 82:118–125

    Article  Google Scholar 

  • McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14:4139–4158

    Article  Google Scholar 

  • Nam J, Lim H, Kim C, Kang JY, Shin S (2012) Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics 6:024120

    Article  Google Scholar 

  • Naseer SM, Manbachi A, Samandari M, Walch P, Gao Y, Zhang YS, Davoudi F, Wang W, Abrinia K, Cooper JM (2017) Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels. Biofabrication 9:015020

    Article  Google Scholar 

  • Ng JW, Collins DJ, Devendran C, Ai Y, Neild A (2016) Flow-rate-insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves. Microfluid Nanofluid 20:151

    Article  Google Scholar 

  • Nivedita N, Garg N, Lee AP, Papautsky I (2017) A high throughput microfluidic platform for size-selective enrichment of cell populations in tissue and blood samples. Analyst 142:2558–2569

    Article  Google Scholar 

  • Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659

    Article  Google Scholar 

  • Sehgal P, Kirby BJ (2017) Separation of 300 and 100 nm particles in Fabry–Perot acoustofluidic resonators. Anal Chem 89:12192–12200

    Article  Google Scholar 

  • Skowronek V, Rambach RW, Franke T (2015) Surface acoustic wave controlled integrated band-pass filter. Microfluid Nanofluid 19:335–341

    Article  Google Scholar 

  • Soliman AM, Eldosoky MA, Taha TE (2017) The separation of blood components using standing surface acoustic waves (SSAWs) microfluidic devices: analysis and simulation. Bioengineering 4:4020028

    Article  Google Scholar 

  • Song PY, Hu R, Tng DJH, Yong KT (2014) Moving towards individualized medicine with microfluidics technology. Rsc Adv 4:11499–11511

    Article  Google Scholar 

  • Sun MR, Agarwal P, Zhao ST, Zhao Y, Lu XB, He XM (2016) Continuous on-chip cell separation based on conductivity-induced dielectrophoresis with 3D self-assembled ionic liquid electrodes. Anal Chem 88:8264–8271

    Article  Google Scholar 

  • Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed 49:5846–5868

    Article  Google Scholar 

  • Wang SD, Sung KJ, Lin XXNN, Burns MA (2017) Bead mediated separation of microparticles in droplets. PLoS One 12:e0173479

    Article  Google Scholar 

  • Wu J, Yan QF, Xuan SH, Gong XL (2017) Size-selective separation of magnetic nanospheres in a microfluidic channel. Microfluid Nanofluid 21:47

    Article  Google Scholar 

  • Xu WC, Hou ZN, Liu ZH, Wu ZG (2016) Viscosity-difference-induced asymmetric selective focusing for large stroke particle separation. Microfluid Nanofluid 20:128

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Jilin Province Natural Science Foundation Projects (No. 20170101136JC), the National Natural Science Foundation Projects (Nos. 51375207; 51875234), and the Jilin Provincial Department of Education Project (JJKH20190140KJ) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., He, F., Li, X. et al. Multi-level separation of particles using acoustic radiation force and hydraulic force in a microfluidic chip. Microfluid Nanofluid 23, 23 (2019). https://doi.org/10.1007/s10404-019-2189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-019-2189-y

Keywords

Navigation