Skip to main content

Advertisement

Log in

Circular-channel particle focuser utilizing viscoelastic focusing

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The miniaturization of flow focuser is a challenge in developing microflow cytometers. Most previously reported microfluidic cell focusers require complex structures or external force fields to achieve the 3D cell focusing. Herein, we propose a novel circular-channel particle focuser utilizing viscoelastic focusing. The circular-channel particle focuser is fabricated using a simple and low-cost microwire molding technique. Whole PDMS channels with perfect circular cross-sections can be fabricated using this protocol. We then characterize the particle focusing performances in our circular-channel particle focuser and discuss the effects of particle size, operating flow rate, cross-sectional dimension and fluid rheological property on particle focusing. The experimental results show that a perfect single-line focusing can be achieved exactly at the channel centerline. Finally, our circular-channel particle focuser is employed for the focusing of blood cells. As it offers special advantages of simple structure, easy fabrication, and sheathless operation, our circular-channel particle focuser may serve as a potential flow focuser for microflow cytometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14:2739–2761

    Article  Google Scholar 

  • Asghari M, Serhatlioglu M, Ortaç B, Solmaz ME, Elbuken C (2017) Sheathless microflow cytometry using viscoelastic fluids. Sci Rep 7:12342

    Article  Google Scholar 

  • Ateya DA, Erickson JS, Howell PB, Hilliard LR, Golden JP, Ligler FS (2008) The good, the bad, and the tiny: a review of microflow cytometry. Anal Bioanal Chem 391:1485–1498

    Article  Google Scholar 

  • Chabinyc ML, Chiu DT, McDonald JC, Stroock AD, Christian JF, Karger AM, Whitesides GM (2001) An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic. Appl Anal Chem 73:4491–4498

    Article  Google Scholar 

  • Chang C-C, Huang Z-X, Yang R-J (2007) Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels. J Micromech Microeng 17:1479

    Article  Google Scholar 

  • Chen Q et al (2018) Tunable, sheathless focusing of diamagnetic particles in ferrofluid microflows with a single set of overhead permanent magnets. Anal Chem 90:8600–8606

    Article  Google Scholar 

  • D’Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL (2012) Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab Chip 12:1638–1645

    Article  Google Scholar 

  • D’Avino G, Greco F, Maffettone PL (2017) Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu Rev Fluid Mech 49:341–360

    Article  MathSciNet  MATH  Google Scholar 

  • Del Giudice F, Greco F, Netti PA, Maffettone PL (2016) Is microrheometry affected by channel deformation? Biomicrofluidics 10:043501

    Article  Google Scholar 

  • Del Giudice F, Sathish S, D’Avino G, Shen AQ (2017) “From the edge to the center”: viscoelastic migration of particles and cells in a strongly shear-thinning liquid flowing in a microchannel. Anal Chem 89:13146–13159

    Article  Google Scholar 

  • Ding X et al (2013) Surface acoustic wave microfluidics. Lab Chip 13:3626–3649

    Article  Google Scholar 

  • Grosse A, Grewe M, Fouckhardt H (2001) Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices. J Micromech Microeng 11:257

    Article  Google Scholar 

  • He F et al (2010) Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett 35:1106–1108

    Article  Google Scholar 

  • James DF (2009) Boger fluids. Ann Rev Fluid Mech 41:129–142

    Article  MATH  Google Scholar 

  • Jiang D, Tang W, Xiang N, Ni Z (2016) Numerical simulation of particle focusing in a symmetrical serpentine microchannel. RSC Adv 6:57647–57657

    Article  Google Scholar 

  • Kang K, Lee SS, Hyun K, Lee SJ, Kim JM (2013) DNA-based highly tunable particle focuser. Nat Commun 4:2567

    Article  Google Scholar 

  • Karimi A, Yazdi S, Ardekani AM (2013) Hydrodynamic mechanisms of cell particle trapping in microfluidics. Biomicrofluidics 7:021501

    Article  Google Scholar 

  • Karnis A, Mason SG (1966) Particle motions in sheared suspensions. XIX. Viscoelast Media Trans Soc Rheol 10:571–592

    Article  Google Scholar 

  • Kim JY, Ahn SW, Lee SS, Kim JM (2012) Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow. Lab Chip 12:2807–2814

    Article  Google Scholar 

  • Lee G-B, Chang C-C, Huang S-B, Yang R-J (2006) The hydrodynamic focusing effect inside rectangular microchannels. J Micromech Microeng 16:1024

    Article  Google Scholar 

  • Leshansky A, Bransky A, Korin N, Dinnar U (2007) Tunable nonlinear viscoelastic “focusing” in a microfluidic device. Phys Rev Lett 98:234501

    Article  Google Scholar 

  • Li D, Lu X, Xuan X (2016) Viscoelastic separation of particles by size in straight rectangular microchannels: a parametric study for a refined understanding. Anal Chem 88:12303–12309

    Article  Google Scholar 

  • Liu C, Xue C, Chen X, Shan L, Tian Y, Hu G (2015) Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels. Anal Chem 87:6041–6048

    Article  Google Scholar 

  • Liu C, Ding B, Xue C, Tian Y, Hu G, Sun J (2016) Sheathless focusing and separation of diverse nanoparticles in viscoelastic solutions with minimized shear. thinning. Anal Chem 88:12547–12553

    Article  Google Scholar 

  • Liu C et al (2017) Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano 11:6968–6976

    Article  Google Scholar 

  • Lu X, Liu C, Hu G, Xuan X (2017) Particle manipulations in non-Newtonian microfluidics: a review. J Colloid Interface Sci 500:182–201

    Article  Google Scholar 

  • Muirhead KA, Horan PK, Poste G (1985) Flow cytometry: present and future. Bio/Technology 3:337

    Google Scholar 

  • Nam J, Tan JKS, Khoo BL, Namgung B, Leo HL, Lim CT, Kim S (2015) Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation viscoelastic flow. Biomicrofluidics 9:064117

    Article  Google Scholar 

  • Otto O et al (2015) Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 12:199

    Article  Google Scholar 

  • Piyasena ME, Graves SW (2014) The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip 14:1044–1059

    Article  Google Scholar 

  • Romeo G, D’Avino G, Greco F, Netti PA, Maffettone PL (2013) Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions. Lab Chip 13:2802–2807

    Article  Google Scholar 

  • Seo KW, Kang YJ, Lee SJ (2014) Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids. Phys Fluids 26:063301

    Article  Google Scholar 

  • Simonnet C, Groisman A (2005) Two-dimensional hydrodynamic focusing in a simple microfluidic device. Appl Phys Lett 87:114104

    Article  Google Scholar 

  • Sollier E, Murray C, Maoddi P, Di Carlo D (2011) Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11:3752–3765

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977

    Article  Google Scholar 

  • Steinkamp JA (1984) Flow cytometry. Rev Sci Instr 55:1375–1400

    Article  Google Scholar 

  • Sun T, Morgan H (2010) Single-cell microfluidic impedance cytometry: a review. Microfluid Nanofluid 8:423–443

    Article  Google Scholar 

  • Tian F, Cai L, Chang J, Li S, Liu C, Li T, Sun J (2018) Label-free isolation of rare tumor cells from untreated whole blood by interfacial viscoelastic microfluidics. Lab Chip 18:3436–3445

    Article  Google Scholar 

  • Wang G-J, Ho K-H, Hsu S-h, Wang K-P (2007) Microvessel scaffold with circular microchannels by photoresist melting. Biomed Microdev 9:657–663

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368

    Article  Google Scholar 

  • Wilson ME, Kota N, Kim Y, Wang Y, Stolz DB, LeDuc PR, Ozdoganlar OB (2011) Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip 11:1550–1555

    Article  Google Scholar 

  • Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23:H178-H183

    Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Xiang N, Shi Z, Tang W, Huang D, Zhang X, Ni Z (2015) Improved understanding of particle migration modes in spiral inertial microfluidic devices. RSC Adv 5:77264–77273

    Article  Google Scholar 

  • Xiang N, Dai Q, Ni Z (2016a) Multi-train elasto-inertial particle focusing in straight microfluidic channels. Appl Phys Lett 109:134101

    Article  Google Scholar 

  • Xiang N, Zhang X, Dai Q, Cheng J, Chen K, Ni Z (2016b) Fundamentals of elasto-inertial particle focusing in curved microfluidic channels. Lab Chip 16:2626–2635

    Article  Google Scholar 

  • Yan S et al (2018) Liquid metal-based amalgamation-assisted lithography for fabrication of complex channels with diverse structures and configurations. Lab Chip 18:785–792

    Article  Google Scholar 

  • Yang R, Feeback DL, Wang W (2005) Microfabrication and test of a three-dimensional polymer hydro-focusing unit for flow cytometry applications. Sens Actuators A Phys 118:259–267

    Article  Google Scholar 

  • Yang S, Kim JY, Lee SJ, Lee SS, Kim JM (2011) Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip 11:266–273

    Article  Google Scholar 

  • Yang S et al (2012) Deformability-selective particle entrainment and separation in a rectangular microchannel using medium viscoelasticity. Soft Matter 8:5011–5019

    Article  Google Scholar 

  • Yuan D, Zhao Q, Yan S, Tang S-Y, Alici G, Zhang J, Li W (2018) Recent progress of particle migration in viscoelastic fluids. Lab Chip 18:551–567

    Article  Google Scholar 

  • Zhang J, Yan S, Sluyter R, Li W, Alici G, Nguyen N-T (2014) Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel. Sci Rep 4:4527

    Article  Google Scholar 

  • Zhang J, Yan S, Yuan D, Alici G, Nguyen N-T, Warkiani ME, Li W (2016) Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16:10–34

    Article  Google Scholar 

  • Zhao Y, Fujimoto BS, Jeffries GDM, Schiro PG, Chiu DT (2007) Optical gradient flow focusing. Opt Express 15:6167–6176

    Article  Google Scholar 

  • Zhu J, Tzeng T-RJ, Hu G, Xuan X (2009) DC dielectrophoretic focusing of particles in a serpentine microchannel. Microfluid Nanofluid 7:751

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by the National Natural Science Foundation of China (81727801, 51875103, 51505082, and 51775111), the Natural Science Foundation of Jiangsu Province (BK20150606), the Fundamental Research Funds for the Central Universities (2242017K41031), the Six Talent Peaks Project of Jiangsu Province (SWYY-005) and the ZhiShan Young Scholar Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Xiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Particle motion in non-Newtonian microfluidics” guest edited by Xiangchun Xuan and Gaetano D’Avino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, N., Dai, Q., Han, Y. et al. Circular-channel particle focuser utilizing viscoelastic focusing. Microfluid Nanofluid 23, 16 (2019). https://doi.org/10.1007/s10404-018-2184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2184-8

Keywords

Navigation