A micro-needle induced strategy for preparation of monodisperse liquid metal droplets in glass capillary microfluidics

Abstract

Monodisperse micro-sized liquid metal droplets have received considerable attention for developing flexible electronics, microfluidics actuators and reconfigurable devices. Herein we report an innovative and efficient strategy for large-scale preparation of Galinstan liquid metal microdroplets with controllable sizes using a micro-needle induced glass capillary microfluidic device. By inserting a stainless steel micro-needle into the inner liquid metal phase in the glass capillary, the hydrodynamic instability of the liquid metal stream is significantly suppressed to guarantee steady fluid flow before the liquid metal is pinched off by the outer phase flow, giving rise to a stable generation of monodisperse liquid metal microdroplets. The microdroplet size dependence on the flow ratio of the continuous and dispersed-phase is investigated experimentally. A theoretical framework based on the Plateau–Rayleigh instability is proposed to explain the advantage of the micro-needle induced strategy. This strategy has great potential for the generation of high interfacial tension liquid metal emulsions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Cheng S, Rydberg A, Hjort K, Wu Z (2009) Liquid metal stretchable unbalanced loop antenna. Appl Phys Lett 94:144103. https://doi.org/10.1063/1.3114381

    Article  Google Scholar 

  2. Chiechi RC, Weiss EA, Dickey MD, Whitesides GM (2008) Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chem Int Ed Engl 47:142–144. https://doi.org/10.1002/anie.200703642

    Article  Google Scholar 

  3. Davis E, Ndao S (2018) On the wetting states of low melting point metal Galinstan® on silicon microstructured surfaces. Adv Eng Mater 20:1700829

    Article  Google Scholar 

  4. de Gennes P-G, Brochard-Wyart F, Quere D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York, pp 119–122

    Google Scholar 

  5. Dickey MD (2017) Stretchable and Soft Electronics using. Liq Met Adv Mater 29:1606425 doi. https://doi.org/10.1002/adma.201606425

    Article  Google Scholar 

  6. Fang W-Q, He Z-Z, Liu J (2014) Electro-hydrodynamic shooting phenomenon of liquid metal stream. Appl Phys Lett 105:134104. https://doi.org/10.1063/1.4897309

    Article  Google Scholar 

  7. Fang J, Davoudi M, Chase G (2015) Drop movement along a fiber axis due to pressure driven air flow in a thin slit. Sep Purif Technol 140:77–83

    Article  Google Scholar 

  8. Gol B, Tovar-Lopez FJ, Kurdzinski ME, Tang SY, Petersen P, Mitchell A, Khoshmanesh K (2015) Continuous transfer of liquid metal droplets across a fluid–fluid interface within an integrated microfluidic chip. Lab Chip 15:2476–2485. https://doi.org/10.1039/c5lc00415b

    Article  Google Scholar 

  9. Gol B, Kurdzinski ME, Tovar-Lopez FJ, Petersen P, Mitchell A, Khoshmanesh K (2016) Hydrodynamic directional control of liquid metal droplets within a microfluidic flow focusing system. Appl Phys Lett 108:164101. https://doi.org/10.1063/1.4947272

    Article  Google Scholar 

  10. Hohman JN, Kim M, Wadsworth GA, Bednar HR, Jiang J, LeThai MA, Weiss PS (2011) Directing substrate morphology via self-assembly: ligand-mediated scission of gallium–indium microspheres to the nanoscale. Nano Lett 11:5104–5110. https://doi.org/10.1021/nl202728j

    Article  Google Scholar 

  11. Hou L, Ren Y, Jia Y, Deng X, Liu W, Feng X, Jiang H (2017) Continuously electrotriggered core coalescence of double-emulsion drops for microreactions ACS. Appl Mater Interfaces 9:12282–12289. https://doi.org/10.1021/acsami.7b00670

    Article  Google Scholar 

  12. Hu L, Li J, Tang J, Liu J (2017) Surface effects of liquid metal amoeba. Sci Bull 62:700–706. https://doi.org/10.1016/j.scib.2017.04.015

    Article  Google Scholar 

  13. Jamali M, Tafreshi HV, Pourdeyhimi B (2018) Droplet mobility on hydrophobic fibrous coatings comprising. Orthogonal Fibers Langmuir 34:12488–12499

    Google Scholar 

  14. Jia Y et al (2018) Electrically controlled rapid release of actives encapsulated in double-emulsion droplets. Lab Chip 18:1121–1129. https://doi.org/10.1039/c7lc01387f

    Article  Google Scholar 

  15. Lee D, Weitz DA (2008) Double emulsion-templated nanoparticle colloidosomes with selective. Permeab Adv Mater 20:3498–3503. https://doi.org/10.1002/adma.200800918

    Article  Google Scholar 

  16. Liang S et al (2017) Liquid metal sponges for mechanically durable, all-soft, electrical conductors. J Mater Chem C 5:1586–1590. https://doi.org/10.1039/c6tc05358k

    Article  Google Scholar 

  17. Lu Y et al (2015) Transformable liquid-metal nanomedicine. Nat Commun 6:10066. https://doi.org/10.1038/ncomms10066

    Article  Google Scholar 

  18. Manzo GM, Wu Y, Chase GG, Goux A (2016) Comparison of nonwoven glass and stainless steel microfiber media in aerosol coalescence filtration. Sep Purif Technol 162:14–19

    Article  Google Scholar 

  19. Mohammed M, Xenakis A, Dickey M (2014) Production of liquid metal. Spheres Molding Met 4:465–476. https://doi.org/10.3390/met4040465

    Article  Google Scholar 

  20. Sen P, Chang-Jin K (2009) A fast liquid-metal droplet microswitch using EWOD-driven contact-line sliding. J Microelectromech Syst 18:174–185. https://doi.org/10.1109/jmems.2008.2008624

    Article  Google Scholar 

  21. Shah RK et al (2008) Designer emulsions using microfluidics. Mater Today 11:18–27. https://doi.org/10.1016/S1369-7021(08)70053-1

    Article  Google Scholar 

  22. Shay T, Velev OD, Dickey MD (2018) Soft electrodes combining hydrogel and liquid metal. Soft Matter 14:3296–3303. https://doi.org/10.1039/c8sm00337h

    Article  Google Scholar 

  23. Shum HC, Lee D, Yoon I, Kodger T, Weitz DA (2008) Double emulsion templated monodisperse phospholipid vesicles. Langmuir 24:7651–7653. https://doi.org/10.1021/la801833a

    Article  Google Scholar 

  24. Sivan V, Tang S-Y, O’Mullane AP, Petersen P, Eshtiaghi N, Kalantar-zadeh K, Mitchell A (2013) Liquid metal marbles. Adv Funct Mater 23:144–152. https://doi.org/10.1002/adfm.201200837

    Article  Google Scholar 

  25. Tang S-Y et al (2014a) Liquid metal enabled pump. Proc Natl Acad Sci 111:3304–3309

    Article  Google Scholar 

  26. Tang SY et al (2014b) Liquid metal actuator for inducing chaotic advection. Adv Funct Mater 24:5851–5858

    Article  Google Scholar 

  27. Tang J, Zhou Y, Liu J, Wang J, Zhu W (2015) Liquid metal actuated ejector vacuum system. Appl Phys Lett 106:031901. https://doi.org/10.1063/1.4906098

    Article  Google Scholar 

  28. Tang S-Y, Ayan B, Nama N, Bian Y, Lata JP, Guo X, Huang TJ (2016) On-chip production of size-controllable liquid metal microdroplets using acoustic waves. Small 12:3861–3869. https://doi.org/10.1002/smll.201600737

    Article  Google Scholar 

  29. Thelen J, Dickey MD, Ward T (2012) A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing Lab. on a Chip 12:3961–3967. https://doi.org/10.1039/C2LC40492C

    Article  Google Scholar 

  30. Utada A, Lorenceau E, Link D, Kaplan P, Stone H, Weitz D (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541

    Article  Google Scholar 

  31. Wei Z et al (2014) Liquid metal/metal oxide frameworks. Adv Funct Mater 24:3799–3807. https://doi.org/10.1002/adfm.201304064

    Article  Google Scholar 

  32. Wissman J, Dickey MD, Majidi C (2017) Field-controlled electrical switch with liquid metal. Adv Sci (Weinh) 4:1700169. https://doi.org/10.1002/advs.201700169

    Article  Google Scholar 

  33. Yoo K, Park U, Kim J (2011) Development and characterization of a novel configurable MEMS inertial switch using a microscale liquid-metal droplet in a microstructured channel. Sens Actuators A Phys 166:234–240. https://doi.org/10.1016/j.sna.2009.12.008

    Article  Google Scholar 

  34. Yu Y, Wang Q, Yi L, Liu J (2014) Channelless fabrication for large-scale preparation of room temperature liquid metal. Droplets Adv Eng Mater 16:255–262 doi. https://doi.org/10.1002/adem.201300420

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 11672095, 11802078, 11702035 and 11572335), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant no. 51521003), the CAS Key Research Program of Frontier Sciences (QYZDB-SSW-JSC036), the CAS Strategic Priority Research Program (XDB22040403), and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (Grant no. UNPYSCT-2018104).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yukun Ren or Xu Zheng or Hongyuan Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “2018 International Conference of Microfluidics, Nanofluidics and Lab-on-a-Chip, Beijing, China” guest edited by Guoqing Hu, Ting Si and Zhaomiao Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 5385 KB)

Supplementary material 2 (WMV 1816 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Ren, Y., Zheng, X. et al. A micro-needle induced strategy for preparation of monodisperse liquid metal droplets in glass capillary microfluidics. Microfluid Nanofluid 23, 13 (2019). https://doi.org/10.1007/s10404-018-2180-z

Download citation

Keywords

  • Micro-needle induced
  • Liquid metal
  • Glass capillary microfluidic
  • Hydrodynamic instability
  • Plateau–Rayleigh instability