Skip to main content
Log in

Effects of micron scale surface profiles on acoustic streaming

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Conventional models of boundary-driven streaming such as Rayleigh–Schlichting streaming typically assume smooth device walls. Using numerical models, we predict that micron scale surface profiles/features have the potential to dramatically modify the inner streaming vortices, creating much higher velocity, smaller scale vortices. Although inner streaming is hard to observe experimentally, this effect is likely to prove important in applications such as DNA-tethered microbeads where the flow field near a surface is important. We investigate here the effect of a sinusoidally structured surface in a one-dimensional standing wave field in a rectangular channel using perturbation theory. It was found that inner streaming vortex patterns of scale similar to the profile are formed instead of the much larger eight-vortices-per-wavelength classical inner streaming patterns seen in devices with smooth surfaces, while the outer vortex patterns are similar to that found in a device with smooth surfaces (i.e., Rayleigh streaming). The streaming velocity magnitudes can be orders of magnitude higher than those obtained in a device with smooth surfaces, while the outer streaming velocities are similar. The same inner streaming patterns are also found in the presence of propagating waves. The mechanisms behind the effect are seen to be related to the acoustic velocity gradients around surface features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aktas MK, Farouk B (2004) Numerical simulation of acoustic streaming generated by finite-amplitude resonant oscillations in an enclosure. J Acoust Soc Am 116(5):2822–2831

    Article  Google Scholar 

  • Amin N, Riley N (1990) Streaming from a sphere due to a pulsating source. J Fluid Mech 210:459–473

    Article  MATH  Google Scholar 

  • Antfolk M et al (2014) Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis. Lab Chip 14(15):2791–2799

    Article  Google Scholar 

  • Barnkob R et al (2012) Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Phys Rev E 86(5):056307

    Article  Google Scholar 

  • Bläsi B et al (2011) Photon management structures originated by interference lithography. Energy Procedia 8:712–718

    Article  Google Scholar 

  • Bruus H (2012a) Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 12(1):20–28

    Article  Google Scholar 

  • Bruus H (2012b) Acoustofluidics 10: scaling laws in acoustophoresis. Lab Chip 12(9):1578–1586

    Article  Google Scholar 

  • Bruus H et al (2011) Forthcoming lab on a chip tutorial series on acoustofluidics: acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11(21):3579–3580

    Article  Google Scholar 

  • Chen Y (2015) Nanofabrication by electron beam lithography and its applications: a review. Microelectron Eng 135:57–72

    Article  Google Scholar 

  • Chung SK, Cho SK (2008) On-chip manipulation of objects using mobile oscillating bubbles. J Micromech Microeng 18(12):125024

    Article  Google Scholar 

  • COMSOL Multiphysics 5.2 (2015). https://doi.org/10.5258/SOTON/404690

  • Costalonga M, Brunet P, Peerhossaini H (2015) Low frequency vibration induced streaming in a Hele-Shaw cell. Phys Fluids 27(1):013101

    Article  Google Scholar 

  • Devendran C, Gralinski I, Neild A (2014) Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluid Nanofluid 17(5):879–890

    Article  Google Scholar 

  • Eckart C (1947) Vortices and streams caused by sound waves. Phys Rev 73(1):68–76

    Article  MATH  Google Scholar 

  • Hahn P, Dual J (2015) A numerically efficient damping model for acoustic resonances in microfluidic cavities. Phys Fluids 27(6):062005

    Article  Google Scholar 

  • Hamilton MF, Ilinskii YA, Zabolotskaya EA (2003) Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. J Acoust Soc Am 113(1):153–160

    Article  Google Scholar 

  • Hammarstrom B, Laurell T, Nilsson J (2012) Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. Lab Chip 12(21):4296–4304

    Article  Google Scholar 

  • Hammarstrom B et al (2014) Acoustic trapping for bacteria identification in positive blood cultures with MALDI-TOF MS. Anal Chem 86(21):10560–10567

    Article  Google Scholar 

  • Hawwa MA (2015) Sound propagation in a duct with wall corrugations having square-wave profiles. Math Probl Eng 2015:516982

    Article  MathSciNet  MATH  Google Scholar 

  • Huang PH et al (2014) A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip 14(22):4319–4323

    Article  Google Scholar 

  • Lei J (2017) Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces. Microfluid Nanofluidics 21(3):50

    Article  Google Scholar 

  • Lei J, Glynne-Jones P, Hill M (2013) Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices. Lab Chip 13(11):2133–2143

    Article  Google Scholar 

  • Lei J, Hill M, Glynne-Jones P (2014) Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices. Lab Chip 14(3):532–541

    Article  Google Scholar 

  • Lei JJ, Glynne-Jones P, Hill M (2016) Modal Rayleigh-like streaming in layered acoustofluidic devices. Phys Fluids 28(1):012004

    Article  Google Scholar 

  • Lei JJ, Hill M, Glynne-Jones P (2017a) Transducer-plane streaming patterns in thin-layer acoustofluidic devices. Phys Rev Appl 8(1):014018

    Article  Google Scholar 

  • Lei JJ, Glynne-Jones P, Hill M (2017b) Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices. Microfluid Nanofluidics 21(2):23

    Article  Google Scholar 

  • Leibacher I, Hahn P, Dual J (2015) Acoustophoretic cell and particle trapping on microfluidic sharp edges. Microfluid Nanofluidics 19(4):923–933

    Article  Google Scholar 

  • Li L et al (2011) Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications. J Mater Chem 21(1):40–56

    Article  Google Scholar 

  • Li N et al (2012) Mobile acoustic streaming based trapping and 3-dimensional transfer of a single nanowire. Appl Phys Lett 101(9):093113

    Article  Google Scholar 

  • Lighthill J (1978) Acoustic streaming. J Sound Vib 61(3):391–418

    Article  MATH  Google Scholar 

  • Lutz BR, Chen J, Schwartz DT (2006) Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal Chem 78(15):5429–5435

    Article  Google Scholar 

  • Mason WP (ed) (1965) Acoustic streaming. In: Physical acoustics. Academic, New York, pp 290–295

    Google Scholar 

  • Mishra P, Hill M, Glynne-Jones P (2014) Deformation of red blood cells using acoustic radiation forces. Biomicrofluidics 8(3):034109

    Article  Google Scholar 

  • Muller PB, Bruus H (2014) Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels. Phys Rev E 90(4):043016

    Article  Google Scholar 

  • Muller PB et al (2012) A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12:4617–4627

    Article  Google Scholar 

  • Muller PB et al (2013) Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Phys Rev E 88(2):023006

    Article  MathSciNet  Google Scholar 

  • Nadal F, Lauga E (2014) Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Phys Fluids 26(8):082001

    Article  Google Scholar 

  • Nama N et al (2014) Investigation of acoustic streaming patterns around oscillating sharp edges. Lab Chip 14(15):2824–2836

    Article  Google Scholar 

  • Nyborg WL (1953) Acoustic streaming due to attenuated plane waves. J Acoust Soc Am 25(1):68–75

    Article  MathSciNet  Google Scholar 

  • Nyborg WL (1958) Acoustic streaming near a boundary. J Acoust Soc Am 30(4):329–339

    Article  MathSciNet  Google Scholar 

  • Nyborg WL (1998) Acoustic streaming. In: Hamilton MF, Blackstock DT (eds) Nonlinear acoustics. Academic, San Diego

    Google Scholar 

  • Oberti S, Neild A, Ng TW (2009) Microfluidic mixing under low frequency vibration. Lab Chip 9(10):1435–1438

    Article  Google Scholar 

  • Ovchinnikov M, Zhou JB, Yalamanchili S (2014) Acoustic streaming of a sharp edge. J Acoust Soc Am 136(1):22–29

    Article  Google Scholar 

  • Rayleigh L (1883) On the circulation of air observed in Kundt’s tube, and on some allied acoustical problems. Philos Trans 175:1–21

    Article  Google Scholar 

  • Rednikov AY, Sadhal SS (2004) Steady streaming from an oblate spheroid due to vibrations along its axis. J Fluid Mech 499:345–380

    Article  MathSciNet  MATH  Google Scholar 

  • Rednikov AY, Sadhal SS (2011) Acoustic/steady streaming from a motionless boundary and related phenomena: generalized treatment of the inner streaming and examples. J Fluid Mech 667:426–462

    Article  MathSciNet  MATH  Google Scholar 

  • Riley N (1975) Steady streaming induced by a vibrating cylinder. J Fluid Mech 68:801–812

    Article  MATH  Google Scholar 

  • Riley N (1987) Streaming from a cylinder due to an acoustic source. J Fluid Mech 180:319–326

    Article  MATH  Google Scholar 

  • Riley N (1992) Acoustic streaming about a cylinder in orthogonal beams. J Fluid Mech 242:387–394

    Article  MATH  Google Scholar 

  • Riley N (1998) Acoustic streaming. Theor Comput Fluid Dyn 10(1–4):349–356

    Article  MATH  Google Scholar 

  • Sadhal SS (2012) Acoustofluidics 13: analysis of acoustic streaming by perturbation methods Foreword. Lab Chip 12(13):2292–2300

    Article  Google Scholar 

  • Schlichting H (1932) Berechnung ebener periodischer Grenzschichtstromungen (Calculation of plane periodic boundary layer streaming). Physikalische Zeitschrift 33(8):327–335

    MATH  Google Scholar 

  • Stuart JT (1965) Double boundary layer in oscillatory viscous flow. J Fluid Mech 24(4):673–687

    Article  MathSciNet  MATH  Google Scholar 

  • Tang Q, Hu JH (2015a) Diversity of acoustic streaming in a rectangular acoustofluidic field. Ultrasonics 58:27–34

    Article  Google Scholar 

  • Tang Q, Hu JH (2015b) Analyses of acoustic streaming field in the probe-liquid-substrate system for nanotrapping. Microfluid Nanofluidics 19(6):1395–1408

    Article  Google Scholar 

  • Tietze S, Schlemmer J, Lindner G (2013) Influence of surface acoustic waves induced acoustic streaming on the kinetics of electrochemical reactions. In: Micro/nano materials, devices, and systems, vol 8923. International Society for Optics and Photonics, p 89231B

  • Tietze S et al (2015) Investigation of the surface condition of an electrode after electropolishing under the influence of surface acoustic waves. In: Proceedings of the 2015 ICU international congress on ultrasonics, vol 70, pp 1039–1042

  • Valverde JM (2015) Pattern-formation under acoustic driving forces. Contemp Phys 56:1–21

    Article  Google Scholar 

  • Wiklund M, Green R, Ohlin M (2012) Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip 12(14):2438–2451

    Article  Google Scholar 

  • Yazdi S, Ardekani AM (2012) Bacterial aggregation and biofilm formation in a vortical flow. Biomicrofluidics 6(4):044114

    Article  Google Scholar 

  • Zhao X-M, Xia Y, Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J Mater Chem 7(7):1069–1074

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work received from the EPSRC Doctoral Prize Fellowship (EP/N509747/1), China Scholarship Council (CSC), the EPSRC Fellowship (EP/L025035/1), the National Natural Science Foundation of China (no. 11804060), the Youth Hundred-Talent Programme of Guangdong University of Technology (no. 220413195), the Special Support Plan of Guangdong Province (2014TQ01X542), and the Science and Technology Planning Program of Guangdong Province (2016A010102017). Models used to generate the simulation data supporting this study are openly available from the University of Southampton repository at https://doi.org/10.5258/SOTON/404690.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjun Lei or Peter Glynne-Jones.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Hill, M., de León Albarrán, C.P. et al. Effects of micron scale surface profiles on acoustic streaming. Microfluid Nanofluid 22, 140 (2018). https://doi.org/10.1007/s10404-018-2161-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2161-2

Keywords

Navigation