Skip to main content
Log in

Parametric study of fluid–solid interaction for single-particle dissipative particle dynamics model

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, a parametric study of fluid–solid interaction for single-particle dissipative particle dynamics (DPD) model is conducted to describe the hydrodynamic interactions in a large range of particle sizes. To successfully reproduce the hydrodynamics for different particle sizes, and overcome the problem that effective radius of solid sphere does not match its real radius, the cut-off radius and conservative force coefficient of single-particle DPD model have been modified. The cut-off radius and conservative force coefficient are related to the drag force and radial distribution function, so that, for each particle size, they can be determined by DPD simulations. Through numerical fitting, two empirical formulas as a function of spherical radius are developed to calculate the cut-off radius and conservative force coefficient. Numerical results indicate that the single-particle DPD model is, indeed, capable of capturing low Reynolds number hydrodynamic interactions for different particle sizes by selecting these model parameters reasonably. Specifically, the model can not only insure that drag force and torque are quantitatively consistent with theoretical results, but also guarantee the effective radius matches well its real radius. In addition, the shear dissipative force is the major part of drag force and should not be ignored. This study will help to improve the application range of single-particle DPD model to make it suitable for different particle sizes and provide parameter guidance for studying fluid–solid interaction using single-particle DPD model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, New York

    MATH  Google Scholar 

  • Backer JA, Lowe CP, Hoefsloot HCJ, Iedema PD (2005) Poiseuille flow to measure the viscosity of particle model fluids. J Chem Phys 122(15):154503

    Article  Google Scholar 

  • Boek ES, Schoot PVD (1998) Resolution effects in dissipative particle dynamics simulations. Int J Mod Phys C 9(08):1307–1318

    Article  Google Scholar 

  • Bolintineanu DS, Grest GS, Lechman JB, Pierce F, Plimpton SJ, Schunk PR (2014) Particle dynamics modeling methods for colloid suspensions. Comput Part Mech 1(3):321–356

    Article  Google Scholar 

  • Chen S, Phan-Thien N, Khoo BC, Fan XJ (2006) Flow around spheres by dissipative particle dynamics. Phys Fluids 18(10):103605

    Article  MathSciNet  Google Scholar 

  • Dzwinel W, Yuen DA (2000) A two-level, discrete-particle approach for simulating ordered colloidal structures. J Colloid Interf Sci 225(1):179–190

    Article  Google Scholar 

  • Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69(4):1352–1360

    Article  Google Scholar 

  • Español P (1997) Fluid particle dynamics: a synthesis of dissipative particle dynamics and smoothed particle dynamics. Europhys Lett 39(6):605

    Article  Google Scholar 

  • Español P (1998) Fluid particle model. Phys Rev E 57(3):2930–2948

    Article  Google Scholar 

  • Fan XJ, Phan-Thien N, Chen S, Wu XH, Ng TY (2006) Simulating flow of DNA suspension using dissipative particle dynamics. Phys Fluids 18(6):063102

    Article  Google Scholar 

  • Fedosov DA, Pivkin IV, Karniadakis GE (2008) Velocity limit in DPD simulations of wall-bounded flows. J Comput Phys 227(4):2540–2559

    Article  MathSciNet  Google Scholar 

  • Fedosov DA, Caswell B, Karniadakis GE (2010) A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys J 98(10):2215–2225

    Article  Google Scholar 

  • Fedosov DA, Caswell B, Suresh S, Karniadakis GE (2011) Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc Natl Acad Sci USA 108(1):35–39

    Article  Google Scholar 

  • Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier–Stokes equation. Phys Rev Lett 56(14):1505

    Article  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    Article  Google Scholar 

  • Happel J, Brenner H (1991) Low Reynolds number hydrodynamics. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  • Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160

    Article  Google Scholar 

  • Izvekov S, Rice BM (2015) On the importance of shear dissipative forces in coarse-grained dynamics of molecular liquids. Phys Chem Chem Phys 17(16):10795–10804

    Article  Google Scholar 

  • Jiang W, Huang J, Wang Y, Laradji M (2007) Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics. J Chem Phys 126(4):044901

    Article  Google Scholar 

  • Jiang C, Ouyang J, Liu Q, Li W, Zhuang X (2016) Studying the viscosity of methane fluid for different resolution levels models using Poiseuille flow in a nano-channel. Microfluid Nanofluid 20(12):157

    Article  Google Scholar 

  • Jiang C, Ouyang J, Li W, Wang X, Wang L (2017) The effects of wall roughness on the methane flow in nano-channels using non-equilibrium multiscale molecular dynamics simulation. Microfluid Nanofluid 21(5):92

    Article  Google Scholar 

  • Keaveny EE (2014) Fluctuating force-coupling method for simulations of colloidal suspensions. J Comput Phys 269:61–79

    Article  MathSciNet  Google Scholar 

  • Khani S, Jamali S, Boromand A, Hore MJ, Maia J (2015) Polymer-mediated nanorod self- assembly predicted by dissipative particle dynamics simulations. Soft Matter 11(34):6881–6892

    Article  Google Scholar 

  • Kim JM, Phillips RJ (2004) Dissipative particle dynamics simulation of flow around spheres and cylinders at finite Reynolds numbers. Chem Eng Sci 59(20):4155–4168

    Article  Google Scholar 

  • Li Z, Drazer G (2008) Hydrodynamic interactions in dissipative particle dynamics. Phys Fluids 20(10):103601

    Article  Google Scholar 

  • Li Y, Geng X, Ouyang J, Zang D, Zhuang X (2015) A hybrid multiscale dissipative particle dynamics method coupling particle and continuum for complex fluid. Microfluid Nanofluid 19(4):941–952

    Article  Google Scholar 

  • Lin NY, Guy BM, Hermes M, Ness C, Sun J, Poon WC, Cohen I (2015) Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys Rev Lett 115(22):228304

    Article  Google Scholar 

  • Liu H, Qian HJ, Zhao Y, Lu ZY (2007a) Dissipative particle dynamics simulation study on the binary mixture phase separation coupled with polymerization. J Chem Phys 127(14):144903

    Article  Google Scholar 

  • Liu M, Meakin P, Huang H (2007b) Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction. J Comput Phys 222(1):110–130

    Article  Google Scholar 

  • Liu M, Meakin P, Huang H (2007c) Dissipative particle dynamics simulation of multiphase fluid flow in microchannels and microchannel networks. Phys Fluids 19(3):033302

    Article  Google Scholar 

  • Liu H, Jiang S, Chen Z, Liu M, Chang J, Wang Y, Tong Z (2015a) Mesoscale study of particle sedimentation with inertia effect using dissipative particle dynamics. Microfluid Nanofluid 18(5–6):1309–1315

    Article  Google Scholar 

  • Liu M, Liu G, Zhou L, Chang J (2015b) Dissipative particle dynamics (DPD): an overview and recent developments. Arch Comput Methods Eng 22(4):529–556

    Article  MathSciNet  Google Scholar 

  • Lu Z-Y, Wang Y-L (2013) An introduction to dissipative particle dynamics. Methods Mol Biol 924:617–633

    Article  Google Scholar 

  • Mai-Duy N, Pan D, Phan-Thien N, Khoo BC (2013) Dissipative particle dynamics modeling of low Reynolds number incompressible flows. J Rheol 57(2):585–604

    Article  Google Scholar 

  • Mai-Duy N, Phan-Thien N, Khoo BC (2015) Investigation of particles size effects in dissipative particle dynamics (DPD) modelling of colloidal suspensions. Comput Phys Commun 189:37–46

    Article  Google Scholar 

  • Masubuchi Y, Langeloth M, Böhm MC, Inoue T, Müller-Plathe F (2016) A multichain slip-spring dissipative particle dynamics simulation method for entangled polymer solutions. Macromolecules 49(23):9186–9191

    Article  Google Scholar 

  • Mehboudi A, Noruzitabar M, Mehboudi M (2014) Simulation of mixed electroosmotic/pressure-driven flows by utilizing dissipative particle dynamics. Microfluid Nanofluid 17(1):199–215

    Article  Google Scholar 

  • Moshfegh A, Jabbarzadeh A (2016) Fully explicit dissipative particle dynamics simulation of electroosmotic flow in nanochannels. Microfluid Nanofluid 20(4):67

    Article  Google Scholar 

  • Pan W, Pivkin IV, Karniadakis GE (2008) Single-particle hydrodynamics in DPD: a new formulation. Europhys Lett 84(1):10012

    Article  MathSciNet  Google Scholar 

  • Pan W, Caswell B, Karniadakis GE (2010) Rheology, microstructure and migration in brownian colloidal suspensions. Langmuir 26(1):133–142

    Article  Google Scholar 

  • Phan-Thien N, Mai-Duy N, Khoo BC (2014) A spring model for suspended particles in dissipative particle dynamics. J Rheol 58(4):839–867

    Article  Google Scholar 

  • Pryamitsyn V, Ganesan V (2005) A coarse-grained explicit solvent simulation of rheology of colloidal suspensions. J Chem Phys 122(10):104906

    Article  Google Scholar 

  • Ranjith SK, Patnaik B, Vedantam S (2013) No-slip boundary condition in finite-size dissipative particle dynamics. J Comput Phys 232(1):174–188

    Article  MathSciNet  Google Scholar 

  • Reichl LE (1980) A modern course in statistical physics. University of Texas Press, Austin

    MATH  Google Scholar 

  • Schmidt JR, Skinner JL (2004) Brownian Motion of a Rough Sphere and the Stokes-Einstein Law. J Phys Chem B 108(21):6767–6771

    Article  Google Scholar 

  • Shan XW, Chen HD (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47(3):1815

    Article  Google Scholar 

  • Yang L, Yin H (2014) Parametric study of particle sedimentation by dissipative particle dynamics simulation. Phys Rev E 90(3):033311

    Article  Google Scholar 

  • Yong X, Kuksenok O, Balazs AC (2015) Modeling free radical polymerization using dissipative particle dynamics. Polymer 72:217–225

    Article  Google Scholar 

  • Zhao T, Wang X, Jiang L, Larson RG (2014) Dissipative particle dynamics simulation of dilute polymer solutions—inertial effects and hydrodynamic interactions. J Rheol 58(4):1039–1058

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the anonymous referees who have provided us with valuable comments and suggestions for improving our study. This work is financially supported by the National Basic Research Program of China (973 Program) (Grant no. 2012CB025903), the Major Research Plan of the National Natural Science Foundation of China (Grant no. 91434201), and the National Natural Science Foundation of China (Grant no. 11671321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ouyang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 938 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ouyang, J. & Li, Y. Parametric study of fluid–solid interaction for single-particle dissipative particle dynamics model. Microfluid Nanofluid 22, 78 (2018). https://doi.org/10.1007/s10404-018-2099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2099-4

Keywords

Navigation